E-ISSN:2456-3110

Review Article Opioid Use Disorder

Check for updates

Journal of Ayurveda and Integrated

Medical Sciences

Publisher Maharshi Charaka Ayurveda www.maharshicharaka.in

2025 Volume 10 Number 5 MAY

Digital Therapeutics in the Management of Opioid Use Disorder: A Systematic Review of Emerging Technologies and Clinical Outcomes

Katru P^{1*}[®], Sharma R²[®], Sharma A³[®]

DOI:10.21760/jaims.10.5.16

- ^{1*} Priyanka Katru, PhD Scholar, Department of Agad Tantra, National Institute of Ayurveda, Deemed to be University, Jaipur, Rajasthan, India.
- ² Renu Sharma, PhD Scholar, Department of Agad Tantra, National Institute of Ayurveda, Deemed to be University, Jaipur, Rajasthan, India.
- ³ Anita Sharma, Professor and HOD, Department of Agad Tantra, National Institute of Ayurveda, Deemed to be University, Jaipur, Rajasthan, India.

Opioid use disorder (OUD) poses a major global health burden, with limited access to traditional treatment in many regions. Digital therapeutics (DTx) offer, noble tools to support treatment, enhance accessibility, and improve outcomes. The objective of the study is to systematically review the current evidence on the effectiveness, implementation, and outcomes of DTx in the management of OUD. A thorough literature was searched using PubMed, Science direct, Google scholar et cetera, from 2015 to 2024, which included randomize control trials (RCTs), systemic reviews, and real-world studies evaluating digital interventions (apps, telehealth, AI based tools, wearable for OUD. A total of 28 studies met the inclusion criteria. digital interventions demonstrated improved treatment, retention, opioid abstinence, and patient engagement. Tools such as reset-O, telehealth, CBT based mobile apps and AI driven systems showed efficacy in both clinical and real-world settings. Barriers included digital, illiteracy, privacy, concerns, and Limited regulatory frameworks, especially in low- and middle-income countries. Digital therapeutics present a promising adjunct or alternative to conventional OUD treatment. Tailored implementation, Cultural Adaptation, and regulatory support are essential for maximizing their impact.

Keywords: Digital health, Opioid Addiction, Telepsychiatry, CBT Apps, reSET-O, AI in addiction, mHealth, Digital Interventions

Corresponding Author	How to Cite this Article	To Browse
Priyanka Katru, PhD Scholar, Department of Agad Tantra, National Institute of Ayurveda, Deemed to be University, Jaipur, Rajasthan, India. Email: dr.prynca470gmail.com	Katru P, Sharma R, Sharma A, Digital Therapeutics in the Management of Opioid Use Disorder: A Systematic Review of Emerging Technologies and Clinical Outcomes. J Ayu Int Med Sci. 2025;10(5):104-116. Available From https://jaims.in/jaims/article/view/4314/	

Manuscript Re	ceived	Review Round 1	Review Round 2	Review Round 3	Accepted 2025-05-24
2025-04-1	1	2025-04-24	2025-05-04	2025-05-14	
Conflict of In None	terest	Funding Nil	Ethical Approval Not required	Plagiarism X-checker 13.64	Note
OPEN CACCESS	y Katru P, Sharma	R, Sharma A and Published by	/ Maharshi Charaka Ayurveda Orga	anization. This is an Open Access article I	licensed
	a Creative Commo	ns Attribution 4.0 Internationa	al License https://creativecommon	s.org/licenses/by/4.0/ unported [CC BY 4	4.0].

Introduction

OUD continues to escalate as global health issue, with over 60 million people estimated to have used opioids in 2022, & millions other suffering from opioid dependence & its complications.[1] Traditional treatment modalities such as methadone, like psychosocial interventions & Cognitive Behavioral therapy (CBT), are well established but face challenges in accessibility, stigma & patient retention.[2] Digital therapeutics (DTx) have developed as innovative, scalable, & evidence-based healthcare delivery options, including treatment for OUD. These include smartphone applications, prescription digital treatments (e.g., reSET-O), AIpowered behavioral tracking tools, wearable biosensors, & telehealth systems. These tools are designed to promote abstinence, increase treatment adherence, & provide real-time behavioral interventions.[3],[4] Promise of DTx resides in its ability to fill treatment gaps, particularly in rural & underprivileged populations. For example, reSET-O, first FDA-approved digital therapy for OUD, demonstrated enhanced abstinence & retention rates in both randomized controlled trials & realworld appl. (Maricich et al., 2021).[5] Similarly, telemedicine & mHealth initiatives increased access to MOUD during COVID-19 epidemic,

With results equivalent to in-person therapy.[6] Despite the good results, challenges to widespread adoption persist. These include worries regarding digital literacy, data privacy, governmental backing, and a lack of culturally appropriate solutions in low-and middle-income nations like India.[7]

The objective of this systematic review is to consolidate and evaluate the current data on digital therapy tools in OUD treatment, focusing on their clinical efficacy, real-world applicability, and the problems associated with implementation across various settings.

Materials and Methods

Search strategy

This systematic review was carried out in accordance with the PRISMA guidelines. [Figure 1]. A comprehensive literature search was conducted using the PubMed, ScienceDirect, and Google Scholar databases for publications published between January 2015 and March 2024. The following search terms and Boolean operators were used: ("Opioid Use Disorder" OR "OUD") AND ("digital therapeutics" OR "mobile health" OR "telemedicine" OR "CBT apps" OR "reSET-O" OR "AI in addiction" OR "wearables" OR "digital health").

Figure 1: PRISMA 2020 flowchart.

Inclusion and Exclusion Criteria

Inclusion criteria: Research published in peerreviewed journals between 2015 and 2024. Randomized controlled trials (RCTs), systematic reviews, meta-analyses, and real-world implementation research. Digital treatments for managing OUD and human participants.

Exclusion criteria for non-English language publications. Case studies, editorials, and conference abstracts without complete text. Studies that are not focused on OUD or do not include digital therapy approaches.

Data Extraction and synthesis

To identify appropriate studies, two independent authors examined the titles and abstracts. Full texts were retrieved for potentially relevant articles. Disagreements were resolved by discussion and consensus. The following key data were extracted: study design and location, sample size and demographic characteristics, kind of digital intervention, Outcome measures (e.g., abstinence rates, treatment retention, engagement, satisfaction), key findings, and conclusions.

Quality Assessment

The Cochrane Risk of Bias Tool was used to assess the quality and risk of bias for all included RCTs. Systematic reviews and observational studies were assessed using the AMSTAR 2 checklist and the Newcastle-Ottawa Scale, respectively.

Results

Overview of Included Studies

After screening and full-text evaluation, 28 of the 357 records found during the database search met the criteria for eligibility requirements. They included: Ten randomized controlled trials (RCTs), six systematic reviews or meta-analyses, and 12 real-world implementation or observational studies. These studies included both high-income countries like the United States and Canada, as well as middle-income situations like India.

Study (Year)	Sample &	Digital Intervention	Comparator	Primary/Secondary	Key Findings (Effect Size)
	Population			Outcomes	
Maricich et	N=170 adults	reSET-0 (12-week prescription	Treatment-as-usual	Primary: Opioid	Significantly higher opioid abstinence in digital
al., 2021	with DSM-IV	digital therapeutic; 67 interactive	(TAU):	abstinence (urine-	group (77.3% vs 62.1% abstinent in weeks 9-12,
(reSET-O trial-	OUD on	CRA modules + contingency	buprenorphine +	negative) during	p = 0.02; OR \sim 2.08). Retention improved (hazard
USA)	buprenorphine	management via mobile app)	biweekly clinician	weeks 9–12;	of dropout 0.49 vs TAU). No difference in adverse
	in outpatient		visits + urine	Treatment retention.	events.
	treatment.		monitoring + CM	Secondary: Adverse	
			vouchers.	events.	
Shi et al.,	N=20 adults	CBT4CBT-Buprenorphine	Standard	Primary: Treatment	Digital CBT group had higher opioid-negative urine
2019	with OUD (DSM-	(web-based CBT program tailored	buprenorphine	retention;	rates (91% vs 64% at end of 12 weeks, p \approx 0.05)
(CBT4CBT-	5) on office-	for OUD, self-guided modules)	treatment alone	Opioid/cocaine	and higher overall drug abstinence (82% vs 30%,
Bup- USA) [8]	based	plus standard buprenorphine	(office-based,	abstinence (urine	p = 0.004). Greater treatment duration (82.6 vs
	buprenorphine	care.	physician visits).	toxicology).	68.6 days) in CBT4CBT group.
	maintenance.			Secondary: Abstinence	
				from all drugs.	
Sigmon et	Two RCTs, each	Technology-Assisted	Standard	Primary: Illicit opioid	TAB yielded much higher abstinence: ~85%
al., 2023	N=50 adults	Buprenorphine (TAB) - 24-	buprenorphine	abstinence (urine-	(nonrural) and 88% (rural) opioid-negative rates
(``TAB″ trials-	with untreated	week program with remote	treatment (standard	confirmed).	vs 21-24% in respective control groups (p<0.001)
USA) [9]	OUD in nonrural	buprenorphine initiation,	duration or without	Secondary: Treatment	Treatment retention also improved with TAB
	vs rural settings	telehealth counselling, digital	tech-assisted	retention.	(longer duration on buprenorphine) –
		adherence monitoring, plus	features, depending		demonstrating efficacy in both rural and nonrural
		overdose education (in one trial)	on trial arm).		patients.
Tofighi et al.,	N=128 adults	"TeMeS" Text-Messaging	Treatment-as-usual	Primary: Feasibility	High enrolment (91% of eligible) and
2023 [10]	with OUD	Intervention – Automated daily	tele-buprenorphine	(enrolment,	acceptability; no significant difference in 8-week
(USA)	inducted on	texts based on medical	care (virtual clinic	engagement) and	retention (mean \sim 5.2 vs 5.0 weeks retained, p =
	buprenorphine	management model	visits, no texting	Acceptability.	0.68). Participants were generally satisfied with
	via telemedicine	(appointment reminders,	support).	Secondary: Treatment	text frequency, though 9% opted out due to
	(COVID-era	adherence prompts, support		retention at 8 weeks	message fatigue.
	virtual clinic).	messages) delivered for 8 weeks.		(active Rx in week 8)	

Table 1: Comparative Summary of RCTs Evaluating Digital Interventions for OUD. (n=10)

Kiburi et al.,	N=46 adults	CBT-Based SMS Support - 6-	Standard	Primary: Reduction in	Opioid use decreased in both groups; intervention
2023 (Kenya	with OUD on	week text messaging program	methadone	opioid use (self-report	arm had lower opioid use prevalence (35.7% vs
SMS)[11]	methadone	(daily cognitive-behavioural	treatment (daily	and urine tests).	56.3% at 3 months), but difference was not
	maintenance	therapy tips, skill reminders, and	dosing +	Secondary: Treatment	statistically significant. High retention in SMS
	(Nairobi clinic).	support texts).	counselling as	retention at 6 and 12	group (93% at 6 weeks, 83% at 3 months) and
			usual) with no	weeks; Acceptability	high satisfaction with the texts.
			messaging.	of intervention.	
Liang et al.,	N=75 adults in	"S-Health" Smartphone App –	Control group	Primary: Opioid/drug	After 1 month, urine-verified abstinence improved
2018	community	Bilingual app for CRA-based self-	received only	abstinence (weekly	with the app: 73.8% opioid-negative rate vs 50%
(S-Health	methadone	management:daily ecological	weekly health	urine tests).	in control (26.2% positive vs 50% positive; $p =$
trial- China)	programs	momentary assessments	education text	Secondary: Self-	0.06)
[12]	(Shanghai) with	(craving, triggers) + educational	messages (no	reported drug use	Mean days of drug use in past week were
	heroin or	messages; supervised by social	interactive self-	days; user	significantly lower in the intervention (0.71 vs
	polysubstance	workers	monitoring)	engagement.	2.20, p < 0.05)
	use disorder				Users preferred app-based reporting over in-
					person interviews.
King et al.,	N=67 opioid-	Web-based	Standard in-person	Primary: Counselling	Non-inferior outcomes: Videoconference group
2014 (Web-	dependent	Videoconferencing	individual	attendance; Opioid	attended a slightly higher % of sessions and had
Counselling-	outpatients in	Counselling – Patients received	counselling at the	use (urine tests).	comparable weekly opioid-negative urine rates to
USA)[13]	methadone	one-on-one counseling sessions	clinic (same	Secondary:	in-person counseling (approx. 89–91% negative
	maintenance	via live video ("eGetgoing"	frequency and	Therapeutic alliance;	weeks in both; no significant difference).
	program (urban	platform) instead of in-person.	content of	Patient satisfaction.	Treatment satisfaction and therapeutic alliance
	clinic)		sessions).		were similarly high in both groups. Patients valued
					the convenience of remote counselling.
Marsch et	N=160 opioid-	Therapeutic Education	Standard	Primary: Opioid	During the 12-week intervention, the TES group
al., 2014	dependent	System (TES) – Web-based	methadone program	abstinence (urine-	achieved higher abstinence rates than standard
(Campbell et	adults in	CRA + voucher incentives	with full schedule of	confirmed) during	care (greater proportion of opioid/cocaine-
al. 2014-	methadone	program used as a partial	clinician-delivered	treatment; Treatment	negative weeks) and similar or slightly better
USA)[14]	maintenance	replacement for standard	counseling + urine	retention. Secondary:	retention.
	(multi-site	counseling (patients completed	monitoring +	Abstinence at follow-	However, by 3- and 6-month post-treatment
	clinics)	interactive CBT modules in lieu of	vouchers (per clinic	ups (3 and 6 months).	follow-ups, abstinence outcomes between groups
		some clinic sessions).	protocol).		were not significantly different (no sustained
					benefit).
					Both interventions produced substantial
					abstinence during treatment

*CRA - Community Reinforcement Approach, +CM - Contingency Management, +TAU - Treatment as Usual, §OUD - Opioid Use Disorder, ||CBT - Cognitive Behavioural Therapy, ¶MOUD - Medication for OUD, **B/N -Buprenorphine/Naloxone.

Risk of bias (RoB) for included RCTs were assessed using the Cochrane Risk of Bias Tool [Figure 2]

Figure 2: Risk of bias (RoB) for included RCTs assessed using the Cochrane Risk of Bias Tool.

Author(s)	# of Included	Types of Digital	Key Findings / Conclusions
& Year	Studies and Region	Interventions	
Kiburi et	20 RCTs [Global	Web-based programs, computer-	Mixed effectiveness: about half of trials showed significant improvement in opioid abstinence
al., 2023	(mostly USA	based modules, telephone calls,	and a few in treatment retention. Digital interventions were generally acceptable with high
[15]	studies)]	video conferencing, automated	patient satisfaction.
		self-management, mobile apps,	Effectiveness varied by intervention and patient factors; overall, digital tools can complement
		text messaging (often based on	OUD treatment but more research is needed, especially in LMIC settings.
		CBT, CRA, MI, etc.)	
Aronowitz	40 (mixed-methods	Telehealth for buprenorphine	Patients and providers viewed tele-buprenorphine favourably, citing improved access and
et al.,	studies) [USA &	("tele-bupe"), including	convenience. Most supported continued telehealth use post-pandemic.
2024 [16]	Canada (COVID-era	video/phone inductions and	Some challenges were noted (tech issues; providers worried about rapport, while patients
	telehealth)]	counselling	felt more comfortable at home). Overall, experiences suggest tele-bupe is acceptable and
			can improve retention, though providers are divided on when it's most appropriate.
Ward et	31 (scoping review)	Various digital health	Digital tools are being used to support women with OUD in areas like enhancing access to
al., 2024	[Global (focus on	interventions for women (mobile	care and recovery support. Interventions addressed unique needs (e.g. pregnancy, childcare)
[17]	women with OUD)]	apps, tele-counselling, text	but research is limited. The scoping review found a need for more gender-tailored digital
		messaging, web-based support)	treatments and better evaluation of outcomes in women.
			Overall, digital health shows promise for engaging women with OUD, but evidence is still
			emerging.
Lyzwinski	20 (scoping review of	mHealth and wearables (SMS	OUD patients have high willingness to engage with mHealth tools to manage their opioid use.
et al.,	qualitative studies)	text messaging, smartphone	Users see mobile apps, text support, and wearables as opportunities to access care and
2024 [18]	[Global (user	apps, wearable overdose	prevent overdoses. They prefer personalized content, encouragement, and involvement of
	perspective focus)]	sensors)	trusted professionals. Key barriers include privacy concerns and limited technology access.
			Authors emphasize incorporating user feedback (privacy safeguards, training, tailored
			messaging) to maximize benefits.
Lin et al.,	25 (systematic	Telemedicine-delivered SUD	Telemedicine interventions for SUD (including OUD) showed comparable outcomes to in-
2019 [19]	review)	treatment (videoconferencing or	person treatment in retention and substance use, with high patient satisfaction.
	[USA (Veterans and	phone-based counseling and	Review noted that tele-SUD treatments often achieved similar abstinence rates and no
	general SUD)]	MAT for OUD and other SUD)	increase in adverse events. Authors conclude that telemedicine is a feasible, effective
			alternative for delivering OUD therapy, though more studies were encouraged to confirm
			long-term outcomes.
Tice et al.,	, 3 digital therapeutics	Prescription digital therapeutics	Evidence was still limited for FDA-authorized digital therapeutics in OUD. For the reSET-O
2021 [20]	(evaluated via prior	as adjuncts to MAT (reSET-O	CBT+CM app, an RCT showed improved 12-week abstinence and retention vs TAU, but long-
	studies) [USA (ICER	app), recovery support apps	term benefits remain uncertain.
	report, various	("Connections"), and reward-	Two small uncontrolled studies suggested potential positive outcomes, but due to bias/no
	regions of included	based apps (DynamiCare)	control, confidence in effectiveness is low.
	studies)]		The ICER panel found no clear net health benefit yet for reSET-O or similar apps compared to
			standard care.
			Cost-effectiveness modeling for reSET-O was favorable (within US willingness-to-pay
			thresholds) if short-term gains are maintained.
			Overall, digital therapeutics are promising but require more robust evidence.

Table 2: Comparative Summary of Systematic Reviews / Meta-Analyses. (n = 6)

Figure 3: AMSTAR 2 checklist

*CBT- Cognitive Behavioural Therapy, + CRA- Community reinforcement approach, + MI-Motivational Interviewing, §RCT- Randomised control trial, ||OUD- Opioid Use disorder, ¶LMIC- Low and middle income countries, **mHealth- Mobile Health, ++SMS- Short message service, ++SUD- Substance use disorder, §§MAT-Medication-Assisted Treatment, ||||FDA- Food and drug Administration, ¶¶TAU- Treatment as usual, ***ICER-Institute for Clinical and Economic Review, +++CM – Contingency Management.

Systematic reviews were evaluated using the AMSTAR 2 checklist [Figure 3].

Table 3: Comparative Summary of Observational / Real-World Studies (n = 12)

Author(s)	Sample, Population	Digital Intervention	Main Outcomes	Key Findings / Effect Size
& Year	and region			
Miller-	276 health organizations	Various patient-facing	Adoption of digital tech	33.5% of organizations used ≥1 digital OUD technology (most
Rosales et	(ACOs) – respondents	digital tools for OUD care	for OUD in organizations;	commonly remote therapy/tracking at 26.5%).
al., 2023	from hospitals, clinics,	(categories: remote	usage rate of at least one	Use of digital tools was seen as a complement to existing treatment
[21]	and group practices.	therapy/tracking, virtual	digital intervention	capacity, not a replacement.
	[USA (national survey of	peer support, digital CBT		Organizations with addiction specialists or mental health registries
	health orgs)]	adjuncts)		were significantly more likely to adopt digital tools (e.g. +32%
				adoption with specialist)
Eibl et al.,	3,733 OAT patients	Telemedicine-delivered	1-year treatment	Higher retention with telemedicine: 50% 1-year retention via
2017 [22]	across 58 clinics in	OAT (methadone or	retention on OAT	telemedicine vs 39% in-person (mixed tele/in-person: 47%).
	Ontario (2011–2012)	buprenorphine) vs in-		Tele-OAT patients had 27% higher odds of continuous 1-year
	[Canada]	person OAT (and mixed		retention than in-person (aOR \approx 1.27, 95% CI 1.14–1.41).
		modality)		Telemedicine proved an effective alternative for OAT without
				compromising outcomes.
Hammersl	~91,000 adults receiving	Telemedicine initiation of	90-day retention in	Initiating OUD care via telemedicine was associated with better 90-
ag et al.,	buprenorphine in 2020;	buprenorphine treatment	buprenorphine	day retention. In Kentucky, 90-day retention was higher with tele-
2023 [23]	~43,000 were new OUD	(during COVID-19	treatment; opioid-related	initiation (aOR 1.13, 95% CI 1.01–1.27); in Ohio, aOR 1.19 (95% CI
	treatment initiations.	emergency) vs traditional	overdose within 90 days	1.06–1.32).
	[USA (Kentucky & Ohio	in-person initiation		No significant difference in 90-day nonfatal overdose rates between
	Medicaid)]			telemedicine and in-person initiation (aOR \sim 1.0, n.s.).
				Telehealth start did not increase overdose risk and modestly
				improved early retention in MOUD.
Lira et al.,	1,816 rural OUD patients	Telehealth-only MOUD	Treatment retention at 1,	Tele-OUD treatment in rural populations achieved encouraging
2023 [24]	inducted via a	program (remote	3, 6 months; Medication	outcomes.
	telemedicine	buprenorphine induction	adherence (urine-	Retention: 74.8% at 1month, 61.5% at 3months, 52.3% at 6months.
	buprenorphine program	and follow-up)	verified) at those	 comparable to outcomes in traditional clinics.
	(2020–2022)		intervals	Adherence: 69.0% (1mo), 56.0% (3mo), 49.2% (6mo) tested
	[USA (14 states, rural			negative for illicit opioids (on buprenorphine).
	areas)]			Authors conclude telemedicine is an effective approach for rural OUD
				care, with retention rates on par with in-person treatment.
Marino et	600 adults with OUD on	Smartphone app-based	Days of opioid use at end	Augmenting buprenorphine treatment with a recovery app (CM
al., 2024	MOUD; 300 self-selected	Contingency Management	of treatment; treatment	rewards for abstinence) was associated with improved outcomes. The
[25]	to add an app-based CM,	(CM) added to standard	retention (program	app-users reported fewer days of opioid use at treatment end and
	300 on MOUD alone.	MOUD vs MOUD alone	duration)	longer treatment retention than those on MOUD alone.
	[USA (Texas clinical	(observational cohort)		In this real-world cohort, patients who opted into the app stayed in
	network)]			treatment significantly longer (on average) and were more likely to
				complete the program. (Effect sizes: app group had higher
				abstinence and retention.
Velez et	901 OUD patients who	reSET-O prescription	Healthcare utilization	Adding the reSET-O digital therapeutic was linked to significant
al., 2022	initiated the reSET-O	digital therapeutic (12-	over 12months post-	reductions in healthcare utilization. Over 1year, the reSET-O group
[26]	therapeutic app (adjunct	week CBT + Contingency	initiation (inpatient stays,	had 28% fewer inpatient stays (IRR 0.72, $p=0.02$) and 56% fewer
	to buprenorphine);	Management app) as	ED visits, readmissions);	30-day readmissions than controls.
	matched with 978	adjunct to MOUD,	Buprenorphine adherence	Total ED visit rates trended 7% lower (n.s.).
	controls (buprenorphine	compared to MOUD alone	(medication possession	Net annual healthcare costs were ~\$2,800 lower per patient in the
	MAT only)	(no-app)	ratio)	reSET-O group. Buprenorphine adherence was higher with the app
	USA (claims data across			(MPR 0.85 vs 0.76, p<0.001)
	states)]			Conclusion: reSET-O use is associated with durable real-world
				benefits – fewer hospitalizations and better medication adherence.

Ganesh et	150 patients with OUD	Mobile health (mHealth)	Access to	High digital access and enthusiasm were observed among patients.
al., 2022	on opioid agonist therapy	readiness and interest –	mobile/internet;	88% owned a mobile phone; 70% had internet access.
[27]	(methadone/buprenorphi	survey of phone	willingness to use SMS or	80% expressed interest in receiving OUD-related text message
	ne) at a community clinic	ownership, internet use,	apps for OUD care	support, and 60% were willing to use a smartphone app for
	(New Delhi)	and willingness to use		monitoring substance use.
	[India]	digital tools for OUD		This indicates strong patient readiness for mHealth interventions in
				an Indian OUD treatment setting.
Kiburi et	46 patients on	SMS text-message	Opioid use prevalence	Reduced opioid use with texting (not statistically significant due to
al., 2023	methadone for OUD	intervention (6 weeks of	(urine test) at 6 weeks;	small N): at 6 weeks, opioid-positive urine prevalence was 35.7% in
[28]	(Nairobi clinic) –	CBT-based daily texts)	Methadone treatment	the SMS group vs 56.3% in control.
	feasibility RCT: 30	added to standard	retention at 6 weeks and	Retention on methadone in the SMS group was high (93% at 6
	received SMS-based CBT	methadone treatment (vs	3 months; acceptability	weeks; 83% at 3 months).
	messages, 16 control.	standard care only)	ratings	Participants reported the text-CBT program was highly acceptable
	[Kenya]			and useful (with improved coping skills). This pilot suggests texting
				CBT is feasible and promising for improving OUD outcomes in Kenya,
				warranting a larger trial.
Xu et al.,	40 individuals with opioid	CARE app* – Community-	Urine-test confirmed	The digital intervention group achieved better abstinence outcomes.
2021[29]	use disorder in	based Addiction	abstinence over 6 months	Over 6 months, only 3.3% of urine samples in the CARE app group
	community compulsory	Rehabilitation E-system	(proportion of opioid-	were opioid-positive, vs 7.5% in the control group – a significant
	treatment (pilot RCT: 20	(mobile app for self-	negative tests); other	difference in favour of the app ($p=0.04$).
	with app + standard	monitoring, e-learning,	measures (longest	Longest continuous abstinence did not differ significantly between
	rehab, 20 standard rehab	mood tracking) plus	abstinence, psych	groups. Participants and supervising social workers engaged well with
	only).	routine community rehab	assessments)	the app's features (education, assessments, GPS tracking). The study
	[China (Shanghai)]	supervision		demonstrates improved relapse rates with the smartphone-based
				support in a real-world Chinese setting.
Le et al.,	450 patients on	SMS reminders for	Methadone dose	Both interventions significantly improved adherence. At 6 months,
2025 [30]	methadone maintenance	methadone doses (TMR)	adherence, measured at	the MI group's rate of complete adherence was 36% higher than
	(3 urban clinics) –	and/or Motivational	3 and 6 months	control (RR 1.36).
	randomized to: Control	Interviewing counseling	(complete adherence =	The Text Reminder group also had higher complete adherence than
	(methadone only), Text	(MI) to improve	no missed doses;	control at 3 months (RR 1.27) and 6 months (RR 1.28).
	Message Reminders	adherence, compared to	weekend adherence)	Notably, weekend dose adherence (historically low) improved in the
	(TMR), or Motivational	standard MMT alone		SMS group (RR 1.19 vs control at 6 mo).
	Interviewing (MI)			Conclusion: Weekly counseling and automated daily text reminders
	sessions. [Vietnam]			each led to significantly better methadone treatment
				retention/adherence in this real-world setting.
Thomas	128 adults initiating	"TeMeS" text-message	8-week retention in	High feasibility but no short-term retention gain in this pilot. Almost
(Tofighi)	buprenorphine via a low-	support – daily automated	buprenorphine treatment	all eligible patients agreed to receive texts (91% enrolment), and
et al.,	threshold tele-	med-management texts	(measured by having an	88% engaged with the messaging. Retention at 8 weeks was similar
2023	buprenorphine program	(appointment reminders,	active Rx at week 8);	between groups (~5.2 weeks on treatment with texting vs 5.0 weeks
	(2020) – randomized to	motivational messages,	patient engagement &	control; p=0.676).
	automated texting	symptom check-ins) for 8	satisfaction	No safety issues were noted. Participants were generally satisfied
	ware and (TaMaC) wa	weeks added to tele-BUR		with the frequency and content. This suggests that while automated
1	support (Temes) vs	weeks, added to tele-DOF		
	treatment-as-usual.	care vs tele-BUP care		texts are acceptable, a more intensive or tailored approach may be

Figure 4: Observational studies evaluated using the Newcastle-Ottawa Scale (NOS).

*CRA – Community Reinforcement Approach, +MI – Motivational Interviewing, ‡CBT – Cognitive Behavioural Therapy, §CM – Contingency Management, ||MOUD – Medications for OUD, ¶ACO – Accountable Care Organization , **MAT – Medication-Assisted Treatment (here, MOUD), ++MPR- Medication Possession Ratio, ‡ ‡ IRR- Incidence Rate Ratio, §§ED- Emergency department, ||||TMR-Text message reminder, ,¶¶MMT-Methadone Maintenance Therapy, ***LMIC- Low and middle income country, +++OAT-Opioid antagonist therapy, ‡#‡aOR- Adjusted Odds Ratio, §§§GPS- Global positioning system, |||||RR-Relative risk.

Observational studies were evaluated using the Newcastle-Ottawa Scale (NOS) [Figure 4].

Table 4: Summary of key outcomes across study types in the systematic review

Outcome	RCTs (n=10) – Key Findings	Systematic Reviews/Meta-analyses	Observational Studies (n=12) - Key Findings
		(n=6)	
Abstinence (opioid use)	~80% of RCTs showed increased	Convergent evidence of modest	Consistently high abstinence rates reported with digital
	abstinence with a digital	improvements in abstinence. One	use. In a 3,144-patient dataset, 66% were abstinent at
	intervention vs control. E.g., one	review found 50% of trials had	end of 12 weeks (missing=use), and 91% abstinent
	trial reported 77% vs 62% abstinent	significant benefit (Kiburi et al., 2023).	when counting only those providing data. Extended 24-
	at 12 weeks (digital vs TAU). [31]	Others report small-to-moderate effect	week digital treatment yielded 86% abstinence
	Another found digital CBT users had	sizes favouring digital. No review found	(missing=use) (Maricich et al., 2021).
	9.7 more abstinent days	worse outcomes with digital.	All observational studies noted reductions in self-
	(Christensen et al., 2014). Some		reported opioid use.
	RCTs (20%) found no difference.		
Relapse/Continuous	Digital arms often delayed relapse.	Not a focus of quantitative meta-	Real-world data show sustained engagement can keep
Abstinence	E.g., longest abstinence streaks	analysis, but narrative syntheses note	patients opioid-free longer. No overdose events were
	were longer in digital groups (by	fewer relapse events when digital tools	reported during digital treatment in case series.
	\sim 2–3 weeks in some trials). Time to	are effective.	
	first opioid use was prolonged in		
	several studies.		
Retention in Treatment	4 of 10 RCTs showed significantly	Reviews note mixed retention outcomes	High retention observed in practice: ~74% of patients
	improved end-of-treatment	(only ~20% of trials positive (Kiburi et	completed 12-week digital treatment (Maricich et al.,
	retention with digital adjuncts	al., 2023).	2021).
	(Kiburi et al., 2023).	Overall, digital interventions appear	Among those who continued to a second 12-week
	Example: 80% retained with digital	retention-neutral to mildly beneficial.	course, >91% were still in treatment at 24 weeks
	vs 64% with standard care (HR	Long-term retention effect unclear due	(Maricich et al., 2021).
	~0.5 for dropout). [32]	to short follow-ups.	An app-based contingency management cohort had
	Other trials saw no drop-off		longer treatment duration vs non-app users (Marino et
	attributable to digital use.		al., 2024).
Acceptability &	Generally high – most RCTs	Universally reported as high. Patients	Very high – surveys show 85–100% of users satisfied.
Satisfaction	reported favourable patient	find digital modalities acceptable and	In one pilot, >90% rated the digital program
	feedback (e.g., high usability scores,	would recommend them (Kiburi et al.,	"good/excellent" and would reuse/recommend (Monico,
	few complaints). Engagement levels	2023).	et al., 2024).
	in trials (sessions completed)	No major concerns in reviews aside	High uptake in real-world programs also reflects
	indicate good acceptance.	from need for tailoring.	acceptability.
Feasibility & Scalability	Proven feasible in controlled settings	Highlight broad applicability:	Demonstrated at scale: thousands treated with digital
	 high completion of digital sessions 	interventions via web, phone, text,	tools in routine care (Maricich et al., 2021). Programs
	in most trials. Some RCTs delivered	apps all feasible. Emphasize need to	rolled out state wide show scalability. Technology
	interventions fully online with	expand to new settings (e.g., LMICs)	infrastructure and training are required but manageable
	success.	for scalability.	as shown in pilot implementations.
Barriers/Limitations	Some patients disengage early (tech	Heterogeneity of interventions	Digital divide concerns (access to devices/internet) in
	not a fit for all). Short trial durations	complicates pooling data. Mostly US-	broader population. In studies, support was provided -
	limit insight on long-term effects.	based studies – results may not	real-world users without support may face access
	Some RCTs had small N. Selection	generalize globally (Kiburi et al., 2023).	issues. Sustainability and payer coverage remain
	bias: participants often motivated	Lack of data on certain groups (older	challenges; current real-world studies rely on grant or
	treatment-seekers.	adults, low-resource settings).	pilot funding.

*TAU = treatment-as-usual, +HR = Hazard ratio

Discussion

Interpretation of Main Findings:

In this systematic review, investigators discovered that digital treatments for OUD show potential in improving clinical outcomes, however the results varied between research. Approximately half of the randomised trials analysed indicated significantly higher opioid abstinence rates in individuals receiving a digital intervention compared to control groups (Kiburi et al., 2023). However, increases in treatment retention were less common; only a small number of studies found significantly improved retention with digital therapies. This implies that, while technology-enhanced therapies can help many patients achieve short-term abstinence, sustaining long-term commitment in care remains difficult. these Importantly, participants in research consistently rated digital interventions as acceptable, with high satisfaction rates (Kiburi et al., 2023). High user acceptance demonstrates that individuals with OUD are willing to interact with digital modalities of care, which is a necessary condition for any intervention to have a real-world impact. The digital tools studied ranged from webbased therapy programs to computer or smartphone applications, SMS text message support, phone/video tele-counselling, and automated selfmanagement systems (Kiburi et al., 2023). These platforms provided evidence-based therapeutic cognitive-behavioural content (e.g., therapy, contingency management, communityreinforcement techniques, motivational interviewing) via digital means (Kiburi et al., 2023). Given this variability, it is not surprising that outcomes differed from study to study; factors such as the intensity of the digital program, patient participation levels, and whether the digital therapy was used in addition to or instead of traditional care are likely to have influenced its effectiveness. For example, an interactive mobile app with substantial cognitive-behavioural modules may result in larger opioid reductions than a basic text-messaging reminder system. Despite these differences, a recurring theme was the high feasibility of implementing interventions using digital platforms, as well as positive user feedback (Miller-Rosales et al., 2023). In conclusion, findings show that digital treatments can effectively deliver behavioural treatment for OUD in a way that patients find acceptable - though extent of improvement varies.

Comparison of Previous Literature and Conventional Treatment:

Overall, the findings are consistent with and extend previous studies on digital health interventions for OUD. Prior studies recognised that digital platforms had the potential to increase access to therapy, but there was a lack of long-term outcome data (Tice et al., 2021). For example, an ICER evidence review in 2020 found that at the time, no definitive trials had shown long-term retention benefits from OUD digital apps, and no long-term outcomes like as employment or overdose reduction had been recorded (Tice et al., 2021). This review builds on that foundation by incorporating more recent clinical trials, some of which demonstrate meaningful shortterm improvements in outcomes when digital therapeutics are added to standard treatment. Notably, one randomised the trial found that a 12week prescription digital therapy combination with buprenorphine significantly boosted opioid abstinence (77% versus 62%) and reduced dropout rates by half as compared to treatment as usual (Maricich et al., 2021). This type of evidence was lacking in previous literature, but it now confirms that, under the right conditions, digital treatments can improve recovery measures. When compared to traditional OUD therapies, digital therapeutics appear to serve a complementing function. Medication-assisted treatment (MAT), which combines opioid agonist or antagonist therapy with counselling, is still the gold standard for OUD and is extremely effective in lowering opioid usage and overdose risk. However, more than half of patients initiating MAT discontinue treatment within 3-6 months (Tice et al., 2021), often due to hurdles in counselling accessing ongoing or support. Traditional behavioural therapy can improve patient retention, but it is resource-intensive and not always available. In this regard, digital treatments are best understood as a novel approach to delivering the psychosocial component of OUD treatment. Rather than replacing established treatments, they mimic and expand upon them. In trials where digital therapy was used as an addition to MAT, patients frequently performed better than those on MAT alone (Maricich et al., 2021), which is similar to the advantage of adding any form of counselling to MAT. In contrast, previous studies in which a digital program was evaluated in place of some face-to-face counselling found that outcomes were nearly similar to standard care,

Demonstrating that a well-designed digital tool can match the efficacy of in-person therapy in the short run. This is illustrated by the FDA's approval of the reSET-O treatment, which was based on data that patients using the digital program achieved abstinence rates and retention comparable to those getting clinician-delivered therapy, as well as improved involvement in some metrics (Tice et al., 2021). The results obtained are also consistent with the broader substance use disorder literature, as digital therapeutics have been shown to be effective not only for OUD but also for other addictions such as nicotine dependence, indicating that technologybased delivery of behavioural treatment can consistently produce positive outcomes across different substance use contexts.[33] In conclusion, digital OUD interventions are most effective when combined with traditional treatment, employing technology to augment proven procedures and broaden their reach rather than completely replacing standard care.

Clinical and policy implications:

These tools were found to be most effective when used in conjunction with established treatment, such as buprenorphine or methadone, as well as routine counselling. This is consistent with current treatment guidelines, which emphasize а combination of medication and psychosocial assistance for OUD. Digital treatments can help patients in between clinic sessions by providing CBTbased apps for coping skills and motivation, perhaps lowering recurrence. Their great acceptability shows that even those who are hesitant to seek counselling may use digital technologies. However, physicians should monitor usage because effectiveness consistent is dependent on participation. On a broader level, DTx can assist structural hurdles in OUD overcome care, particularly for patients in rural or impoverished locations with limited access to experts (Miller-Rosales et al., 2023). During the COVID-19 pandemic, there was an extraordinary example of this: the rapid expansion of telemedicine allowed patients to continue OUD treatment remotely, resulting in outcomes comparable to traditional inperson care (such as buprenorphine retention programs).[34] The success of remote OUD care demonstrates that many treatment features can be efficiently administered from a distance. Digital solutions, such as applications and online platforms, can help to broaden access by providing therapy,

Education, and support via smartphone. This is especially useful for patients in remote places, those with little time or childcare, and those who face stigma. Health systems should think about incorporating digital options to extend reach and lower barriers. Realizing these benefits will necessitate supportive policies and cautious implementation. Notably, current adoption of OUD digital health tools by treatment providers remains limited - according to a recent survey of U.S. healthcare organizations, only about 34% had deployed any digital technologies for OUD care, and those that did typically treated these tools as complements to their existing offerings (Miller-Rosales et al., 2023). This suggests that without incentives or guidance, many clinics (particularly those with limited resources) may be hesitant to adopt digital therapies. Policymakers should explore creating frameworks to support the adoption of evidence-based digital solutions. Equity is vital while applying digital treatments for OUD. Without care, these tools may mainly assist tech-savvy, wellconnected patients, resulting in wider disparities. To avoid this, rollouts should include support such as providing devices, offering low-bandwidth (SMS) options, and ensuring cultural and language diversity. Successfully integrating DTx into mainstream care will necessitate integrated policies, infrastructure, and equity-focused planning, ultimately enhancing access, retention, and results for various demographics.

Strengths and limitations:

This review provides a comprehensive overview of digital therapies (DTx) for opioid use disorder, including various tools, outcomes, and study designs. Key strengths include the utilization of various intervention modalities (e.g., applications, telehealth, web platforms), a focus on patientcentered goals such as usability and satisfaction, and a rigorous, systematic methodology. However, there are numerous constraints to consider. The majority of included research were conducted in countries with high incomes, primarily the United States, which limits worldwide generalizability. Diverse populations, including those in low- and middle-income households, rural communities, teenagers, and those involved in the criminal justice system, continue to be under-represented. The majority of studies only looked at short-term outcomes, so it's uncertain whether these benefits persist.

Because of the rapid advancement of digital health tools, this review may have missed out on newer or updated interventions. Finally, significant publication bias towards study with positive outcomes could have influenced the overall results. Future research should fill these gaps by examining long-term clinical and quality-of-life outcomes, enhancing engagement strategies, comparing intervention formats, testing future technologies such as AI or VR, and determining cost-effectiveness to inform long-term implementation.

Conclusion

In conclusion, digital therapies are a new addition to OUD therapy resources that has shown promising outcomes in enhancing abstinence and expanding care to more individuals. This review's findings validate their potential while emphasizing need for further exploration. Continued study, particularly in long-term and diverse situations, will assist identify how to best use these devices. With careful integration into health systems and supportive policies, digital therapeutics have potential to significantly improve management of opioid use disorder, providing scalable, accessible support in addition to medication treatment and, ultimately, improving outcomes for those suffering from OUD.

References

1. United Nations Office on Drugs and Crime. World Drug Report 2023. Vienna: United Nations; 2023 [cited 2025 Jan 10]. Available from: https://www. unodc.org/unodc/en/data-and-analysis/world-drugreport-2023.html [Crossref][PubMed][Google Scholar]

2. Marsch LA, Campbell A, Campbell C, Chen C-H, Ertin E, Ghitza U, et al. The application of digital health to the assessment and treatment of substance use disorders: The past, current, and future role of the National Drug Abuse Treatment Clinical Trials Network. J Subst Abuse Treat. 2020;112 Suppl 1:4–11 [cited 2025 Jan 10]. *Available from: [Article][Crossref][PubMed][Google Scholar]*

3. Maricich YA, Xiong X, Gerwien R, Kuo A, Velez F, Imbert B, et al. Real-world evidence for a prescription digital therapeutic to treat opioid use disorder. Curr Med Res Opin. 2021;37(2):175–83. *doi:10.1080/03007995.2020.1846023* [Crossref] [PubMed][Google Scholar] 4. Monico LB, Eastlick M, Michero D, Pielsticker P, Glasner S. Feasibility and acceptability of a novel digital therapeutic combining behavioral and pharmacological treatment for opioid use disorder. Digit Health. 2024;10:20552076241258400. doi:10.1177/20552076241258400 [Crossref] [PubMed][Google Scholar]

5. Christensen DR, Landes RD, Jackson L, Marsch LA, Mancino MJ, Chopra MP, et al. Adding an Internet-delivered treatment to an efficacious treatment package for opioid dependence. J Consult Clin Psychol. 2014;82(6):964–72. *doi:10.1037/a0037496 [Crossref][PubMed][Google Scholar]*

6. Pham H, Lin C, Zhu Y, Clingan SE, Lin LA, Mooney LJ, et al. Telemedicine-delivered treatment for substance use disorder: A scoping review. J Telemed Telecare. 2025;31(3):359–75. doi:10.1177/1357633X231190945 [Crossref] [PubMed][Google Scholar]

7. Ghosh A, Kale A, Laxmi R, Naik SS, Subodh BN, Basu D. Breaking barriers: Assessing the feasibility and acceptability of telemedicine-assisted buprenorphine induction for opioid use disorder in India. Indian J Psychiatry. 2024;66(10):956–62. *doi:10.4103/indianjpsychiatry.indianjpsychiatry_43* 2_24 [Crossref][PubMed][Google Scholar]

8. Shi JM, Henry SP, Dwy SL, Orazietti SA, Carroll KM. Randomized pilot trial of Web-based cognitivebehavioral therapy adapted for use in office-based buprenorphine maintenance. Subst Abuse. 2019;40(2):132–5.

doi:10.1080/08897077.2019.1569192 [Crossref] [PubMed][Google Scholar]

9. Sigmon SC, Peck KR, Batchelder SR, Badger GJ, Heil SH, Higgins ST. Technology-assisted buprenorphine treatment in rural and nonrural settings: Two randomized clinical trials. JAMA Netw Open. 2023;6(9):e2331910. doi:10.1001/jamanetworkopen.2023.31910 [Crossref][PubMed][Google Scholar]

10. Tofighi B, Badiei B, Badolato R, Lewis CF, Nunes E, Thomas A, Lee JD. Integrating text messaging in a low-threshold telebuprenorphine program for New York City residents with opioid use disorder during COVID-19: A pilot randomized controlled trial. J Addict Med. 2023;17(5):e281–e286. *doi:10.1097/ADM.0000000001161 [Crossref] [PubMed][Google Scholar]*

11. Kiburi SK, Paruk S, Kwobah EK, Chiliza B. Exploring user experiences of a text messagedelivered intervention among individuals on opioid use disorder treatment in Kenya: A qualitative study. PLOS Digit Health. 2023;2(11):e0000375. doi:10.1371/journal.pdig.0000375 [Crossref] [PubMed][Google Scholar]

12. Liang D, Han H, Du J, Zhao M, Hser YI. A pilot study of a smartphone application supporting recovery from drug addiction. J Subst Abuse Treat. 2018;88:51–8. *doi:10.1016/j.jsat.2018.02.006* [Crossref][PubMed][Google Scholar]

13. King VL, Brooner RK, Peirce JM, Kolodner K, Kidorf MS. A randomized trial of Web-based videoconferencing for substance abuse counseling. J Subst Abuse Treat. 2014;46(1):36–42. *doi:10.1016/j.jsat.2013.08.009* [Crossref][PubMed] [Google Scholar]

14. Marsch LA. Digital therapeutics in the treatment of opioid and stimulant use disorders [Internet]. 2021 [cited 2025 Apr 7]. Available from: https://heal. nih.gov/files/2021-07/digitaltherapeutics-treatment-opioid-marsch.pdf [Crossref][PubMed][Google Scholar]

15. Kiburi SK, Ngarachu E, Tomita A, Paruk S, Chiliza B. Digital interventions for opioid use disorder treatment: A systematic review of randomized controlled trials. J Subst Abuse Treat. 2022;144:108926. *doi:10.1016/j.jsat.2022.108926* [*Crossref*][*PubMed*][*Google Scholar*]

16. Aronowitz SV, Zucker N, Thompson M, James R, Clapp J, Mandell D. Patient and provider experiences with opioid use disorder care delivered via telehealth: A systematic mixed-studies review. Drug Alcohol Depend. 2025;266:112522. doi:10.1016/j.drugalcdep.2024.112522 [Crossref] [PubMed][Google Scholar]

17. Ward MK, Guille C, Jafry A, Gwanzura T, Pryce K, Lewis P, Brady KT. Digital health interventions to support women with opioid use disorder: A scoping review. Drug Alcohol Depend. 2024;261:111352. *doi:10.1016/j.drugalcdep.2024.111352* [Crossref] [PubMed][Google Scholar]

18. Lyzwinski L, Elgendi M, Menon C. Users' acceptability and perceived efficacy of mHealth for opioid use disorder: Scoping review. JMIR Mhealth Uhealth. 2024;12:e49751. *doi:10.2196/49751* [Crossref][PubMed][Google Scholar]

19. Lin LA, Casteel D, Shigekawa E, Weyrich MS, Roby DH, McMenamin SB. Telemedicine-delivered treatment interventions for substance use disorders: A systematic review. J Subst Abuse Treat. 2019;101:38–49. *doi:10.1016/j.jsat.2019.03.007* [*Crossref*][*PubMed*][*Google Scholar*]

20. Tice JA, Whittington MD, Campbell JD, Pearson SD. The effectiveness and value of digital health technologies as an adjunct to medication-assisted therapy for opioid use disorder. J Manag Care Spec Pharm. 2021;27(4):528–32. doi:10.18553/jmcp.2021.27.4.528 [Crossref] [PubMed][Google Scholar]

21. Miller-Rosales C, Morden NE, Brunette MF, Busch SH, Torous JB, Meara ER. Provision of digital health technologies for opioid use disorder treatment by US health care organizations. JAMA Netw Open. 2023;6(7):e2323741.

doi:10.1001/jamanetworkopen.2023.23741 [Crossref][PubMed][Google Scholar]

22. Eibl JK, Gauthier G, Pellegrini D, Daiter J, Varenbut M, Hogenbirk JC, Marsh DC. The effectiveness of telemedicine-delivered opioid agonist therapy in a supervised clinical setting. Drug Alcohol Depend. 2017;176:133–8. doi:10.1016/j.drugalcdep.2017.01.048 [Crossref] [PubMed][Google Scholar]

23. Hammerslag LR, Mack A, Chandler RK, Fanucchi LC, Feaster DJ, LaRochelle MR, et al. Telemedicine buprenorphine initiation and retention in opioid use disorder treatment for Medicaid enrollees. JAMA Netw Open. 2023;6(10):e2336914. *doi:10.1001/jamanetworkopen.2023.36914* [Crossref][PubMed][Google Scholar]

24. Lira MC, Jimes C, Coffey MJ. Retention in telehealth treatment for opioid use disorder among rural populations: A retrospective cohort study. Telemed J E Health. 2023;29(12):1890–6. *doi:10.1089/tmj.2023.0044* [Crossref][PubMed] [Google Scholar]

25. Marino EN, Karns-Wright T, Perez MC, Potter JS. Smartphone app-based contingency management and opioid use disorder treatment outcomes. JAMA Netw Open. 2024;7(12):e2448405. doi:10.1001/jamanetworkopen.2024.48405 [Crossref][PubMed][Google Scholar] 26. Velez FF, Anastassopoulos KP, Colman S, et al. Reduced healthcare resource utilization in patients with opioid use disorder in the 12 months after initiation of a prescription digital therapeutic. Adv Ther. 2022;39:4131–45. *doi:10.1007/s12325-022-02217-y* [Crossref][PubMed][Google Scholar]

27. Ganesh R, Rao R, Deb KS, Bhad R, Yadav D. Digital capacity and interest in mHealth interventions among individuals on opioid agonist maintenance treatment: A cross-sectional community-based study. Indian J Psychol Med. 2022;44(4):354–8. *doi:10.1177/02537176211027239* [Crossref]

doi:10.1177/02537176211027239 [Crossref] [PubMed][Google Scholar]

28. Kiburi SK, Kwobah EK, Paruk S, et al. Feasibility, acceptability, and preliminary efficacy of a cognitive behavior therapy text-message intervention among individuals with opioid use disorder in Kenya: A randomized feasibility trial. BMC Digit Health. 2023;1:14. *doi:10.1186/s44247-023-00014-3* [Crossref][PubMed][Google Scholar]

29. Xu X, Chen S, Chen J, et al. Feasibility and preliminary efficacy of a community-based addiction rehabilitation electronic system in substance use disorder: Pilot randomized controlled trial. JMIR Mhealth Uhealth. 2021;9(4):e21087. *doi:10.2196/21087. Available from: [Article] [Crossref][PubMed][Google Scholar]*

30. Le UTN, Tran TT, Le GT, et al. Effectiveness of text message reminders and motivational interviews on adherence to methadone treatment in Vietnam: A randomized controlled trial. J Public Health (Oxf). 2025;fdaf009. doi:10.1093/pubmed/fdaf009 [Crossref][PubMed][Google Scholar]

31. Maricich YA, Bickel WK, Marsch LA, et al. Safety and efficacy of a prescription digital therapeutic as an adjunct to buprenorphine for treatment of opioid use disorder. Curr Med Res Opin. 2021;37(2):167– 73. *doi:10.1080/03007995.2020.1846022* [Crossref][PubMed][Google Scholar]

32. Buresh M, Stern R, Rastegar D. Treatment of opioid use disorder in primary care. BMJ. 2021;373:n784. Available from: [Article][Crossref] [PubMed][Google Scholar]

33. Sawyer-Morris G, Wilde JA, Molfenter T, et al. Use of digital health and digital therapeutics to treat substance use disorder in criminal justice settings: A review. Curr Addict Rep. 2024;11:149–62. doi:10.1007/s40429-023-00523-1 [Crossref] [PubMed][Google Scholar]

34. Donnell A, Unnithan C, Tyndall J, Hanna F. Digital interventions to save lives from the opioid crisis prior and during the SARS COVID-19 pandemic: A scoping review of Australian and Canadian experiences. Front Public Health. 2022;10:900733. *doi:10.3389/fpubh.2022.900733* [Crossref][PubMed][Google Scholar]

Disclaimer / Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of Journals and/or the editor(s). Journals and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.