

ISSN 2456-3110 Vol 4 · Issue 5 Sept-Oct 2019

Journal of Ayurveda and Integrated Medical Sciences

www.jaims.in

Indexed

An International Journal for Researches in Ayurveda and Allied Sciences

ORIGINAL ARTICLE Sept-Oct 2019

ICP-OES Analysis of Samanya and Vishesha Shodhita Loha

Dr. Rachana Bhat¹, Dr. Vikram S.², Dr Sruthi C. V.³

^{1,3}Post Graduate Scholar, ²Professor & Head, Department of Rasashastra and Bhaishajya Kalpana, Sri Sri College of Ayurvedic Science and Research, Banglore, Karnataka, INDIA.

ABSTRACT

Rasashastra is a science which deals with metals and minerals and their therapeutic effects. These can cause hazardous effects if not purified. Purificatory procedures can be generally classified into two, namely - Samanya Shodhana and Vishesha Shodhana. In this study, reference from Rasatarangini was adopted for Samanya and Vishesha Shodhana of Loha. The Analysis of Raw sample of iron, Samanya Shoditha Loha and Vishesha shoditha Loha was done to analyse the difference physically and chemically by ICP-OES method. The discussions are made on the Shodhana procedures and results obtained with giving probable reasons. From Samanya and Vishesha Shodhana of Loha it is evident that the particle size was reducing drastically after each procedure making it more brittle and fine. There were many changes observed from the raw sample of Loha to the Vishesha shodhita Loha physically and analytically. Thus we can adopt Samanya Shodhana, Vishesha Shodhana or together depending on the requirement.

Key words: Samanya Shodhana, Vishesha Shodhana, Loha Shodhana.

INTRODUCTION

Rasashastra is a science which deals with metals and minerals and their therapeutic effects. It can cause hazardous effects if not purified. Shodhana^[1] is one such procedure which is capable of removing impurities from the drug making it more efficacious and fit for consumption. After specific purificatory procedures, these can be further processed and utilized.

There are 2 purificatory procedures explained namely,

Address for correspon	ndence:		
Dr. Rachana Bhat			
Post Graduate Scholar, D	Department	of Rasashastra and Bhaishajya	
Kalpana, Sri Sri College o	f Ayurvedic	Science and Research,	
Banglore, Karnataka, Ind	ia		
E-mail: rachanabhatnaar	ni@gmail.co	m	
Submission Date: 09/09/2019 Accepted Date: 19/10/2019			
Access this article online			
Quick Response Code			
	Website: www.jaims.in DOI: 10.21760/jaims.4.5.27		

- 1. Samanya Shodhana (General) As the word indicates Samanya Shodhana is the general method of purification which can be done for set of drugs.
- 2. Vishesha Shodhana (Specific)- Vishesha Shodhana is the purification method specific to the drug.

Loha is a metal explained extensively in Rasashastra classics which is included under Dhatuvarga. This metal is very hard and mainly available in the form of fillings. This should be subjected to specific purificatory measure so that it can be further processed.

In this study, Samanya and Vishesha Shodhana of Loha was carried out and analysis was done to note the differences. Many references are available in classics for Shodhana of Loha. Here the reference from Rasatarangini was adopted for Samanya and Vishesha Shodhana procedures.

MATERIALS AND METHODS

This involves the following procedures;

- a) Samanya Shodana of Loha.^[2]
- b) Vishesha Shodana of Loha.^[3]

Name of the Practical: Samanya Shodana of Loha.

Reference: R.T 15/4-6

Date of preparation: 10/12/2018

Date of completion: 09/01/2019

Instruments

- Iron vessel
- Steel vessel
- Spatula
- Cloth
- Gas stove
- Strainer

Ingredients

Ashuddha Loha (Iron fillings): 750g

Liquid Media: Q.S

Media

- Kanji
- Takra
- Kulattha Kwatha
- Gomutra
- Tila Taila

Procedure

- Ashudda Loha (Iron fillings) was taken in an Iron vessel and was heated in *Teevra Agni*, till it became red hot.
- It was then quenched in specific liquid media placed in a stainless steel vessel.
- After cooling down, *Loha* was taken out from the vessel and again put in the Iron vessel and heated till it becomes red hot. This process was repeated 3 times in each media.
- Temperature of *Loha* during red hot state was noted.
- Weight of the *Loha* was measured repeatedly.
- Time taken for each process was noted.

OBSERVATIONS

ORIGINAL ARTICLE

Table 1: Tabulation of changes observed during theNirvapa in Kanji

Sept-Oct 2019

SN	Nirvapa Dravya	Loss after each <i>Nirvapa</i>	Time taken for red hot	Changes in <i>Loha</i>	Changes in media
1.	Kanji	750g	30 min	Took long duration for	The smell of <i>Kanji</i> was evident during quenching.
2.	Kanji	748g	30 min	heating. Colour of <i>Loha</i> changed from	Colour of <i>Kanji</i> changed from white to brown. The temperature of <i>Kanji</i> was
3.	Kanji	745g	28 min	brown to black. <i>Loha</i> became little brittle.	increased after quenching of Iron fillings into it. <i>Kanji</i> became viscid and slimy after Shodana.

Table 2: Tabulation of changes observed during the Nirvapa in Takra.

SN	Nirvapa Dravya	Loss after each <i>Nirvapa</i>	Time taken for red hot	Changes in <i>Loha</i>	Changes in media
1.	Takra	745g	28 min	<i>Loha</i> took comparatively	Foul smell was felt
2.	Takra	740g	26min	less time to become red hot.	during quenching. Colour of
3.	Takra	738g	24min	Colour of Loha turned black. Loha turned brittle. Some part of Loha turned into coarse powder form. Prominent	the media changed from white to greyish. <i>Takra</i> came out from the vessel while quenching. <i>Takra</i> split

cracks were into solid observed on and liquid the surface of quenching Iron fillings. quenching and solid part settled down at the bottom of the vessel.

Table 3: Tabulation of changes observed during theNirvapa in Kulatha Kwatha.

SN	Nirvapa Dravya	Loss after each <i>Nirvapa</i>	Time taken for red hot	Changes in <i>Loha</i>	Changes in media
1.	Kulatha Kwatha	738g	20 min	Colour of <i>Loha</i> turned from blackish brown to	Kulatha smell was appreciated during quenching. Sound and
2.	Kulatha Kwatha	735g	20min	deep brown. Iron fillings	fumes were more observed during
3.	Kulatha Kwatha	729g	16min	were more brittle. Loha turned more into coarse powder form. Loha started getting stuck to the ladle. Some powder flew away from the vessel as vapour while quenching.	Nirvapa. Kulatha Kwatha became brown to bluish brown in colour. Its consistency became thicker.

ORIGINAL ARTICLE Sept-Oct 2019

Table 4: Tabulation of changes observed during theNirvapa - Gomutra

S N	Nirvapa Dravya	Loss after each <i>Nirvap</i> a	Time taken for red hot	Changes in <i>Loha</i>	Changes in media
1.	Gomutr a	725g	14mi n	Iron filings were turned in to <i>Loha</i> <i>Churna</i> , <i>Churna</i> turned finer. <i>Loha</i> was dark brown in colour <i>Loha</i> took considerabl y less time to become red hot. <i>Gomutra</i> smell was appreciated in <i>Loha</i> . <i>Loha</i> was more brittle	Gomutra colour changed from light yellow to dark brown. Comparativel y more Sparkles were observed during quenching. A pungent smell was coming out during quenching. Media took longer time for cooling.

Table 5: Tabulation of changes observed during theNirvapa-Tila Taila

SN	Nirvapa Dravya	Loss after each <i>Nirvapa</i>	Time taken for red hot	Changes in <i>Loha</i>	Changes in media
1.	Tilataila	719g	10 min	Colour of <i>Loha</i> was completely black.	Colour of oil turned light brown in colour.
2.	Tilataila	744g	13min	Metallic lustre of <i>Loha</i> was lost. <i>Loha</i> got	Oil became viscid after <i>Shodana</i> . A pungent smell and

3.	Tilataila	742g	16min	fire while	black fumes
-		0	-	heating.	was observed
				Cracks were	after
				seen on the	quenching.
				surface of	
				Loha.	
				Brittleness	
				was	
				increased.	
				Loha	
				turned	
				completely	
				into coarse	
				powder	
				form.	
				It took 10	
				minutes to	
				get	
				completely	
				red hot.	

Precaution

- Loha had to be heated in Teevra Agni, in order to become red hot.
- The red hot state had to be perceived accurately.
- It was poured carefully into each media to prevent loss.
- Loha was allowed to cool down after quenching.
- After quenching, collection of *Loha* was done carefully.

Results

- Total Quantity 750g.
- Loss 180g.
- Quantity after Shodana 600g.

Name of the Practical: Vishesha Shodana of Loha

Reference: R.T 20/15

Date of Preparation: 01/02/2019

Date of Completion: 15/02/2019

Instruments

- Iron vessel
- Steel vessel

ORIGINAL ARTICLE Sept-Oct 2019

- Spatula
- Cloth
- Gas stove
- Strainer

Ingredients

- Shoditha Loha Churna : 600 gm
- Triphala Kashaya : 14 liters

Procedure

 Same as Samanya Shodana of Loha (Nirvapa in Triphala Kashaya 7 times)

OBSERVATIONS

Table 6: Tabulation of changes observed during theNirvapa - Tripahala Kwatha

SN	Nirvapa Dravya	Loss after each <i>Nirvapa</i>	Time taken for red hot	Changes in <i>Loha</i>	Changes in media
1.	Triphala	600g	17m	A reddish texture was	Colour of decoction
2.	Triphala	593	15m	observed over Loha	turned blackish
3.	Triphala	587	12m	during red hot state.	brown.
4.	Triphala	574g	10m	A crackly	<i>Kashaya</i> started to boil
5.	Triphala	560g	10m	sound came out	during quenching.
6.	Triphala	542g	8m	while heating till	<i>Kashaya</i> overflowed
7.	Triphala	536g	7m	it became red hot.	from the vessel.
			Small particles of <i>Loha</i> got attached to the Iron pan.	particles of <i>Loha</i> got attached to the Iron	
				Powder of <i>Loha</i> was formed as vapour while quenching.	

ISSN: 2456-3110

		Colour of	
		Loha	
		turned	
		blacker.	

Precautions

Similar to Samanya Shodana of Loha.

Results

Total Quantity - 600g.

Loss - 64g.

Quantity after Vishesha Shodana - 536g.

Results

Physical changes observed in Loha

Table 1: Changes observed in Loha

SN	Properties	Samanya Shodhana	Vishesha Shodhana
1.	Colour	Black	Brown
2.	Touch	Softer	Softest
3.	Nature	Brittle	More brittle
4.	Consistency	Fine powder	Very fine
5.	Total no. of <i>Nirvapa</i>	15	15+7

Analysis of Iron

Table 2: Analysis report of Raw iron by ICP-OES

SN	Parameters	Values(%)
1.	Carbon	0.18
2.	Silica	0.20
3.	Sulphur	0.07
4.	Manganese	0.05
5.	Iron	99.5

 The raw Sample of Iron had Carbon, Silica, Sulphur and Manganese as an impurity in a trace quantity.

ORIGINAL ARTICLE Sept-Oct 2019

Table 3: Analysis report of *Samanya Shodita Loha* by ICP-OES

SN	Parameters	Values(%)
1.	Carbon	0.57
2.	Silica	0.12
3.	Sulphur	ND
4.	Manganese	0.03
5.	Iron	99.28

 The Loha After Samanya Shodhana had Carbon, Silica, Manganese as a trace elements.

Table 4: Analysis report of *Vishesha Shodita Loha* by ICP-OES

SN	Parameters	Values(%)
1.	Carbon	0.61
2.	Silica	0.12
3.	Sulphur	ND
4.	Manganese	0.02
5.	Iron	99.25

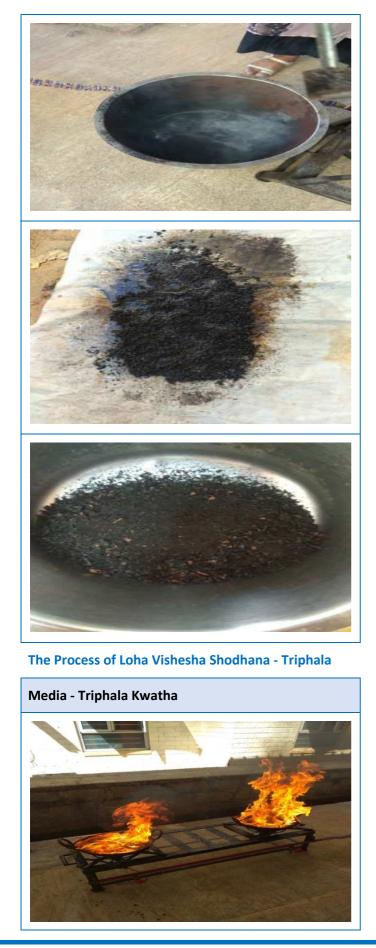
 The Loha after Vishesha Shodana had Carbon, Silica, and Manganese as trace elements.

The Process of Loha Samanya Shodhana

ISSN: 2456-3110

ORIGINAL ARTICLE Sept-Oct 2019

ISSN: 2456-3110


ORIGINAL ARTICLE Sept-Oct 2019

ISSN: 2456-3110

ORIGINAL ARTICLE Sept-Oct 2019

DISCUSSION

Role of Nirvapa Procedure

This process was performed in two phases, in first phase Iron was heated up to red hot state on strong heat, and in second phase, the red hot iron was quenched in liquid media. These heating and quenching are repeated for specific times and in particular media.

First Phase: Phase of heating

In this phase, iron fillings were heated in a iron vessel on a high temperature to the complete red hot state of the metal. Heat is the most important phenomenon. Because, for the transformation of state of matter heat is most essential for every processing, a particular heating pattern is indicated. This pattern of heating must be followed to achieve the desired change in the matter.

Second phase: Phase of quenching

In this phase, the red hot filings of the iron are quenched in specific liquid media. The quenching must be immediate, because to achieve the desired changes in the metal sudden cooling in needed. The change in the structure of the matter depends on intensity of heat and mode of cooling. The changes in instant cooling must happen faster than that of slow cooling. So after heating of the metal, it should be quenched in the particular liquid media instantly.

Role of Media

Particular liquid media are used in *Shodhana* process of specific materials. For the *Shodhana* of *Dhatus*

ORIGINAL ARTICLE Sept-Oct 2019

generally *Tila taila, Takra, Gomutra, Arnal / Kanji* and *Kulatha Kwatha* are used. These media may have particular functions in purification and detoxification of metals. All these liquid medias act as cooling media during process of *Nirvapa*, this may serve a favourable atmosphere to the material for occurrence of particular chemical reaction and compound formation. These may enter through the cracked surface of the material and cause film coating and further heating leads to breaking of the material. They may also act as source of inorganic traces.

Discussion on Results

- From table no 1, 2 and 3, it was observed that carbon percentage was increased after each Shodhana.
- It was evident from the results obtained that sulphur was not detected after Samanya Shodhana. This might be because sulphur might have oxidized due to repeated heating procedure.
- The trace elements like silica and manganese were persisting even after the Vishesha Shodhana but with gradual decrease in percentage.
- Percentage of Iron was almost constant throughout the Shodhana procedures.

CONCLUSION

Shodhana plays a pivotal role in removing the impurities and imparting qualities to the drug. From Samanya and Vishesha Shodhana of Loha it is evident that the particle size was reducing drastically after each procedure making it more brittle and fine. The evident colour change was observed during Vishesha Shodhana of Loha which was done with Thiphala Kwatha. There were many changes observed from the raw sample of Loha to the Vishesha Shodhita Loha physically and analytically. Thus importance of Shodhana is apparent.

REFERENCES

 Shastri kashinath (ed) Rasatarangini of Sadananda Sharma,ED/11th, Mothilal banarasidas: Varanasi ,2004; pg no.22

ISSN: 2456-3110

ORIGINAL ARTICLE Sept-Oct 2019

- Shastri kashinath (ed) Rasatarangini of Sadananda Sharma,ED/11th, Mothilal banarasidas: Varanasi ,2004; pg no.362
- Shastri kashinath (ed) Rasatarangini of Sadananda Sharma,ED/11th, Mothilal banarasidas: Varanasi ,2004; pg no.464

How to cite this article: Dr. Rachana Bhat, Dr. Vikram S., Dr Sruthi C. V. ICP-OES Analysis of Samanya and Vishesha Shodhita Loha. J Ayurveda Integr Med Sci 2019;5:168-177.

http://dx.doi.org/10.21760/jaims.4.5.27

Source of Support: Nil, Conflict of Interest: None declared.

Copyright © 2019 The Author(s); Published by Maharshi Charaka Ayurveda Organization, Vijayapur (Regd). This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.