

ISSN 2456-3110 Vol 5 · Issue 2 Mar-Apr 2020

Journal of Ayurveda and Integrated Medical Sciences

www.jaims.in

An International Journal for Researches in Ayurveda and Allied Sciences

ORIGINAL ARTICLE Mar-Apr 2020

SEM-EDAX Analysis of Jarita Vanga and Vanga Bhasma

Dr. Sruthi C V¹, Dr. Sneha Dinesh Patel², Dr. Vikram S.³

^{1,2}Post araduate Scholar, ³Professor and HOD, Department of Rasashastra and Bhaishajya Kalpana, Sri Sri college of Ayurvedic Science and Research, Bengaluru, Karnataka, INDIA.

ABSTRACT

Use of Vanga Bhasma can traced back from ancient era. Detailed description regarding the procedure is available in various Rasagranthas. Jarana is a special technique mentioned in recent Rasa treatises for Puti Lohas which is an intermediate stage between Shodhana and Marana. In this study, after performing both Samanya and Vishesha Shodhana, Vanga was subjected to Jarana using Ashwatha Twak as per the reference of Rasa Tarangini followed by Prakshalana to remove its alkaline nature. Later Vanga was subjected to Putapaka using Bhavana Dravya as Kumari Swarasa. Organoleptic and Elemental constitutions of both Jarita Vanga and Vanga Bhasma where analysed to see the differences and to observe the changes due to Samanya Shodhana and Vishesha Shodhana.

Key words: Samanya Shodhana, Vishesha Shodhana Vanga Jarana, Vanga Bhasma, SEM-EDAX.

INTRODUCTION

References of Vanga can be traced back from the ancient literature; Vedas. Even though Brihatryis mentioned the therapeutic use of Vanga; detail knowledge of preparation of Vanga can be found in Rasagranthas. Vanga is one among the Puti Lohas among classification of Dhatu. Here Puti indicated the obnoxious odour. Unlike other metals, these set of metals possess low melting point and there is an intermediate procedure called Jarana in between Shodhana and Marana. Through high heating procedure; in this procedure Vanga will change from its metallic nature completely in to powder form

Address for correspondence:

Dr. Sruthi C V

Post Graduate Scholar, Department of Rasashastra and Bhaishajya Kalpana, Sri Sri college of Ayurvedic Science and Research, Bengaluru, Karnataka, INDIA. E-mail: sruthichenan5792@gmail.com

Submission Date: 14/03/2020 Accepted Date: 20/04/2020 Access this article online

Quick Response Code

Website: www.jaims.in

DOI: 10.21760/jaims.5.2.11

making Marana easier. Vanga will be losing it metallic characters both physically and chemically. Physical changes can be assessed through Organoleptic tests where as chemical changes can be assessed through instrumental analysis (SEM-EDS, XRD, FTIR etc.).

Since both the Jarita Vanga and Vanga Bhasma are in powder form it becomes a need to find the differences. State of the metal has to be assessed to analyse the safety levels and here this study has been conducted to analyse and to compare the physical and chemical changes of Jarita Vanga and Vanga Bhasma.

AIMS AND OBJECTIVES

- 1. To identify genuine sample of Vanga
- 2. To subject Vanga for Samanya Shodhana and Vishesha Shodhana
- 3. To subject Vanga for Jarana
- 4. To subject Jarita Vanga for Marana
- 5. To compare Jarita Vanga and Vanga Bhasma Analytically using SEM-EDAX

MATERIALS AND METHODS

The raw material of Vanga was collected from Amrit Kesari Deppo, Bengaluru and examined for Grahya Lakshana. Other ingredients like Tila Taila, Kulatha,

ISSN: 2456-3110

Haridra, Gomutra, Ashwatha Twak were collected from local market. Takra, Kanji, Kulatha Kwatha, Nirgundi Swarasa and Vanga Bhasma were prepared in teaching pharmacy of Sri Sri College of Ayurvedic Science and Research, Bangalore. SEM-EDAX analysis was carried out in CIF innovation (MAHE-MIT).

Preparation of Vanga Bhasma

Preparation of *Vanga Bhasma* can be listed in three stages i.e.

- a) Shodhana Samanya and Vishesha
- b) Jarana and Prakshalana
- c) Marana

Shodhana

Samanya Shodhana^[1]

Materials

Vessels, Darvi, Pithara Yantra, Spoon, weighing scale, measuring jar

Method

Asuddha Vanga is taken in a Darvi and heated. When it's completely melted, poured into Kanji through Pithara Yantra. After cooling down Vanga is collected from Kanji, dried and weighed. This process is repeated for 3 times in each of Kanji (Sour gruel), Takra (Butter milk), Kulatha Kwatha (Decoction of horse gram), Gomutra (Cow's Urine) and Tila Taila respectively.

Vishesha Shodhana^[2]

Materials

Vessels, Darvi, Pithara Yantra, Spoon, weighing scale, measuring jar.

Method

Samanya Shodhita Vanga is taken in a Darvi and heated. When it's completely melted, poured into Haridrayukta Nirgundi Swarasa through Pithara Yantra. After cooling down Vanga is collected from media, dried and weighed. This process is repeated for 3 times. **ORIGINAL ARTICLE**

Mar-Apr 2020

Vanga Jarana^[3]

Materials

Kadahi, Gas stove, Weighing machine, Sharava, Ladle, Pyrometer

Method

Shudha Vanga is taken in a Kadahi and heated till it melted. Ashwatha Twak Churna which is properly dried was added little by little to the melted Vanga along with continuous stirring. Stirring was continued till all the metal converted in to powder form. All these powders were collected to the centre of the Kadahi and covered with a Sharava. Teevragni was given continuously till it became red hot. In between; Sharava lifted and checked for the colour of the Vanga. When all the metallic particles were converted into powder form; heating was stopped and allowed to self-cool. Later, its collected and weighed.

Prakshalana^[4]

Jarita Vanga samples were washed in water to remove Ksharatwa.

Procedure: Jarita Vanga samples were kept in 4 parts of water and left overnight.

Next day morning water portion decanted, and this procedure was repeated until it becomes neutral in pH. Decanted water was collected and checked for pH changes.

MARANA⁵

Materials

Weighing machine, Measuring jar, Sharava, Kora cloth, Multan mitti, Pyrometer

Method

Jarita Vanga was taken in a porcelain Khalwa and 70 ml of Kumari Swarasa was added and Mardana was done till it became a thick paste which is suitable for making *Chakrika*. After preparing *Chakrika* it was dried well and weighed. *Chakrika* was kept in *Sharava* and *Sandhibandhana* was done and kept for drying. After complete drying, it was subjected to *Laghuputa*. In the pit, 2/3rd Vanopala was filled and then *Sharava*

ISSN: 2456-3110

Samputa kept over that. Later, remaining 1/3rd Vanopala was filled and ignited using little Karpura. After complete burning, allowed to cool and next day when it cooled completely; taken out to collect Vanga. Collected Vanga was weighed and this procedure was repeated till Bhasma Lakshana appeared.

OBSERVATION AND RESULTS

Table 1: Total weight of Vanga taken for Shodhana

1.	Total Vanga taken before Samanya Shodhana	800 g
2.	Total Vanga after Samanya Shodhana	660g
3.	Total weight loss	140g
4.	Weight loss in percentage during Shodhana	17.5%
5.	Total quantity of <i>Vanga</i> remaining after <i>Shodhana</i> in %	82.5 %

Table 2: Showing changes in Vanga and liquid mediaafter Samanya Shodhana

SN	Media	Changes in Vanga	Changes in media
1.	Kanji	On melting, coloured layer and black charred particles appeared on top of melted <i>Vanga</i> . A sudden sound was heard while pouring melted <i>Vanga</i> to <i>Kanji</i> . <i>Vanga</i> became a hard mass.	Foul smell was emitted during heating. Splashing sound produced during quenching. It was spilling out while quenching. While melting black soot like substances appeared on the surface.
2.	Takra	Layer appeared on top while liquifying Sudden sound was heard while quenching	Foul smell felt during melting and quenching. Supernatant layer of Media became black in colour.
3.	Kulatha Kwatha	Puti Gandha felt with less intensity Black soot appeared on top during	Loud and sudden cracking sound Black particles seen on

melting which was top. removed. Brownish layer formed after Dhalana After washing also little bit brownish layer of kwatha still remained. 4. Gomutra After Dhalana Fumes and froth were Vanga became very observed during clean thorny and quenching. Colour of bright. Cracking media unchanged. Spilling out, of media sound was observed. Puti observed during Gandha while quenching. heating. 5. Tila Taila In between darvi No cracking sound no splashing out while containing Vanga caught fire during quenching. 2nd and 3rd time of Took longer time to melting. cool. Not much Puti Gandha was observed except burnt smell when it caught fire. Unlike other media, Vanga obtained was smooth mass with blunt ends. 6. Kanji On melting, Foul smell was emitted coloured layer and during heating. black charred Splashing sound particles appeared produced during on top of melted quenching. Vanga. It was spilling out while A sudden sound quenching. was heard while pouring melted While melting black soot like substances Vanga to Kanji. appeared on the Vanga became a surface. hard mass. 7. Takra Layer appeared on Foul smell felt during top while liquifying melting and quenching. Sudden sound was Supernatant layer of heard while Media became black in

ORIGINAL ARTICLE Mar-Apr 2020

quenching colour.

Temperature of media

Table 3: Vanga - temperature and pH of the media

SN	Media	Temperature		pH of media
		Before	After	
1.	Kanji			3.35
2.	Takra	26	43	4/3.99
3.	Kulatha kwatha	38	54	5.91
4.	Gomutra	28	35	9.22
5.	Tila taila	26	48	-

Vishesha Shodhana

- Smell of Nirgundi Swarasa appreciated during Nirvapa.
- Colour of the media changed to darker.
- Vanga became more brittle with sharp edges.
- More smaller particles observed after *Shodhana*.
- It was little hard to extract and to clean Vanga from the media.
- Shining reduced.

Table 4: Showing results of weight of Vanga beforeand after Vishesha Shodhana

Quantity of Vanga taken for Vishesha Shodhana	402 gm
Quantity of <i>Vanga</i> obtained after <i>Vishesha</i> Shodhana	385 gm
Total weight loss	17 gm
Weight loss in percentage	4.22%
Quantity of <i>Vanga</i> obtained after <i>Vishesha</i> Shodhana	95.78%

Jarana

Vanga became completely liquified after 3 min of heating. After addition of *Ashwatha Churna*, initially

all *Churna* became black and burnt. Later, after 20 minutes it started to turn in to grey and then to greyish white. When *Churna* was added it burnt and emitted smoke, which got ceased after some time. *Vanga* remained separate from burnt *Churna* initially and later it turned to smaller particle. *Vanga* was slowly losing it mobility. After 1hr 6 min *Vanga* completely turned in to grey *Churna*. After 22 min of subjecting to *Tivragni*, it started becoming red hot. After 4 hr 10 min of tivragni it completely became red hot.

- Quantity of Shodhita Vanga taken for Jarana : 385 gm
- Quantity obtained after Jarana : 442 gm
- Weight gain in percentage after *Jarana* in % : 1.5%

Precautions

- Only dried Ashwatha Twak Churna should be used.
- Ashwatha Churna should be added little by little.
 Once a part of Churna added, next part should be added only after cessation of fumes.
- Better to use a ladle of long handle and mask to escape from fumes.
- While adding *Churna* try to maintain *Madhyamagni*.
- Tivragni should be started only when all the Vanga particles and Churna mixed and turned completely in to powder. No metallic particle should be visible.
- Maximum heat should be provided for *Tivragni* till the bottom of the vessel visibly turn red.

Prakshalana

Table 5: Showing pH of Vanga after each wash

SN	No. of washing	рН
1.	After 1 st wash	11.80
2.	After 3 rd wash	9.13
3.	After 5 th wash	7

ORIGINAL ARTICLE Mar-Apr 2020

ORIGINAL ARTICLE

Mar-Apr 2020

Marana

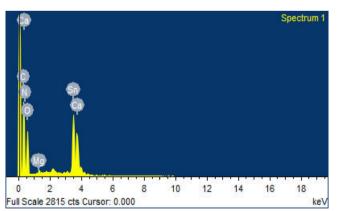
Table 6: Showing observations during Marana

No. of Puta	Quantity of <i>Vanga</i> (gm)	Q. of <i>Kumari</i> <i>Swarasa</i> (ml)	Weight of <i>Chakrika</i> (gm)	After Puta (gm)	Loss (gm)/ Gain
1.	221	70	235	213	7
2.	213	65	205	207	6
3.	207	60	225	206	1
4.	206	60	238	204	2
5.	204	60	207	205	1(Gain)
6.	205	60	228	201	4
7.	201	60	221	196	5
8.	196	60	205	190	6
9.	190	60	200	183	7
10.	183	60	192	169	14
11.	169	60	185	163	5
12.	163	50	185	159	4
13.	159	50	168	156	3
14.	156	40	165	147	9
15.	147	40	171	143	4

Table 7: Showing organoleptic characters during Marana

SN	Touch	Colour	Taste	Varitara	Unnama
1.	Rough	Greyish white	Slight Alkaline	-	-
2.	Rough	Greyish white	Slight Alkaline	-	-
3.	Rough	Greyish white	Slight Alkaline	-	-
4.	Rough	Dull white	Tasteless	-	-

5.	Softer	Dull white	Tasteless	-	-
6.	Softer	Dull white	Tasteless	-	-
7.	Softer	Dull white	Tasteless	-	-
8.	Soft	Dull white	Tasteless	-	-
9.	Soft	Dull white	Tasteless	-	-
10.	Soft	White	Tasteless	-	-
11.	Soft	White	Tasteless	-	-
12.	Soft	White	Tasteless	-	-
13.	Soft	White	Tasteless	-	-
14.	Fine	White	Tasteless	-	-
15.	Very Fine	White	Tasteless	+	+


Quantity taken for Putapaka : 220 gm

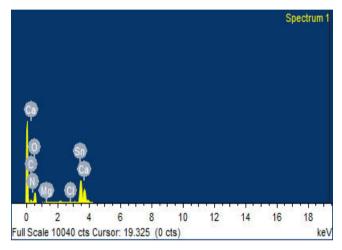
Quantity obtained : 143 gm

Percentage of loss : 35%

ANALYTICAL RESULTS

Figure 1: SEM-EDAX Elemental Constitution of Jarita Vanga

Table 8: SEM-EDAX - Elemental Constitution of Jarita Vanga


Element	Weight %	Atomic %
СК	11.58	26.09
NK	1.11	2.14

ISSN: 2456-3110

ORIGINAL ARTICLE Mar-Apr 2020

ОК	33.77	57.13
Мд К	0.50	0.56
Si K	0.31	0.30
Са К	3.93	2.65
Sn L	48.80	11.13

Figure 2: SEM-EDAX Elemental Constitution of Vanga Bhasma

Table 9: SEM-EDAX-Elemental Constitution of Vanga Bhasma

Element	Weight %	Atomic %
СК	7.41	18.21
NK	1.32	2.79
ОК	33.75	62.28
Мд К	0.43	0.52
Si K	0.42	0.44
Са К	3.40	2.50
Sn L	53.27	13.25

Images of Vanga Shodhana and Marana

Vanga getting red-hot

After Jarana Twak Churna

Journal of Ayurveda and Integrated Medical Sciences | Mar - Apr 2020 | Vol. 5 | Issue 2

ORIGINAL ARTICLE Mar-Apr 2020

Prakshalana	Vanga and Kumari Swarasa
Chakrika	Marana
After 1 st puta	Vanga Bhasma
Rekhapurnata	Varitara and Unnama

DISCUSSION

Vanga is one among Dhatu Varga which possess low melting point. Shodhana is the procedure which removes impurities from substances and reduces particles size. It can even attribute new qualities to the metal and makes Marana easier. Here Vanga has underwent both Samanya and Vishesha Shodhana through which hardness has reduced to an extent. In Samanya Shodhana due to repeated heating and quenching in acidic and alkaline media has increased the brittleness of Vanga. More over lot of impurities came out during liquefaction which were mixed with Vanga and invisible earlier. Especially after Dhalana in Gomutra Vanga became So clear and brittle. Maximum of impurities could be removed by Samanya Shodhana.

Table 10: Vanga - Media pH evaluation andproperties

SN	Media	рН	Character	Properties - pH evaluation
1.	Kanji	3	Acidic	It is <i>Tikshna, Samghata- Bhedana</i> and <i>Shaithilikaran</i> May causes softening and breaking of the material
2.	Takra	4	Acidic	Similar as <i>Kanji</i>
3.	Kulatha Kwatha	5.6	Acidic	Ashmari Bhedana property Can cause breakdown the particles easily
4.	Gomutra	9.22	Alkaline	Dahana and Pachana properties. So, it may cause worn-out of the material, Can eradicate unwanted substances.
5.	Tila Taila			Sukshma and Ashukari by these Easy break down of material as it can enter into minute spaces of the substance and quicker action due to Ashukaritwa.

Through Vishesha Shodhana through Haridrayukta Nirgundi Swarasa, left out impurities were removed. Vanga became more brittle and more small particles were observed.

Jarana is an intermediate stage between Shodhana and Marana. Here Ashwatha Twak Churna was used for Jarana. Vanga was turned completely in to powder form and was greyish white in colour.

Vanga was heated continuously in a temperature ranging from 450°C - 550°C because of which Molecular bonds might have loosened. *Ahwatha Twak Churna* which was added little by little might have

ORIGINAL ARTICLE Mar-Apr 2020

entered the intermolecular space and due to continues heat; and pressure from ladle may have led to breakage of the bonds and converted in to greyish-white powder.

On the next stage *Vanga* was covered with a *Sharava* and heated continuously till it attains red-hot. This created a closed space concentrating maximum of the temperature toward *Vanga*. Through this controlled combustion, *Vanga* was turned in to greyish white ash. Because of the open heating earlier, *Vanga* was reacting to environmental Oxygen due to which analytical reports showed maximum Oxygen content.

As Jarita Vanga was highly alkaline in nature (pH-11.80) it was subjected to Prakshalana. After 5th Prakshalana pH turned neutral. Marana has changed the greyish-white powder in to white colour might be because further heating took place. After 15th puta, Vanga passes Rekhapurna, Varitara and Unnama Parikshas indicating Laghuta of the product. After analysis, Oxygen content was maximum (62.28%) in Vanga Bhasma. Where as in Jarita Vanga oxygen content was less than Vanga Bhasma. Percentage of Sn was more in Vanga Bhasma (13.25%) and in Jarana it was (11.13%). Carbon content in Vanga Bhasma was more (18.21%) compared to Jarita Vanga (11.58%) indicating more organic content in Bhasma. Jarita Vanga shows presence of Ca (3.93%) might be because of Ashwatha Twak Churna added in equal quantity for Jarana.

CONCLUSION

By means of organoleptic examination no metallic particles were visible in both Jarita Vanga and Vanga Bhasma. Later was smooth and soft compared to former. Jarita Vanga didn't pass the Varitara and Unnama Bhasma Pariksha where as Vanga Bhasma passed Rekhapurna. Varitara and Unnama Parikshas which indicates lightness of the product. Even though the metal was transferred to completely powdered form, it was not passing the Bhasma Pariksha. Through instrumental analysis, we can assess that Vanga is in oxide form and absence of any heavy metal which is safe for ingestion. percentage of Sn present in Bhasma sample was higher than Jarita *Vanga* sample. Ca content was noted in both the samples. It might because of the use of *Ashwatha Twak Churna* extensively during *Jarana*. Carbon content was noted and is higher in *Vanga Bhasma* samples indicating organic contents. Mg content was observed in *Vanga Bhasma*; might be because of the use of *Kumari* in *Putapaka*. When a herbo-mineral mixture is incinerated in closed vessels, the nano-oxide particles will be converted in to a more favourable oxidation form for human consumption.^[6-8]

On gross Analysis of data obtained through organoleptic and instrumental aids; it can be said that *Vanga Bhasma* seems to be safer to consume and was passing all the *Bhasma Parikshas*. *Jarita Vanga* on the other hand was powdered completely during *Teevragnipaka* and still *Guru* compared to *Bhasma*. It was not completely passed *Rekhapurna*, *Varitara* and *Unnama Parikshas*. Whereas *Bhasma* was very soft in touch so can be taken for therapeutic purposes.

REFERENCES

- 1. Sharma Sadananda, Rasa Tarangini, Motilal Banarasi das publication, Varanasi, 1982p:18 and 437
- Acharya Vagbhata, Rasaratna Samucchaya, edited by sri Dattatray Anant Kulkarni, ML publications, New Delhi, 1969, p 124 and 152
- 3. Sharma Sadananda, Rasa Tarangini, Motilal banarasi das publication, Varanasi, 1982p:18 and 441
- Mishra Sidhinandan, Ayurvediya Rasashastra, Chaukhambha Orientalia, ed/15thVaranasi, 2006: p465
- Acharya Yadavji Trikamji, Rsamritam, Joshi D. (1998), Translation, Chaukhambha Sanskrit bhavan, Varanasi, 1998:3/88-94
- S.K. Singh, D.N. Gautam, M. Kumar, S.B. RaiSynthesis, characterization and histopathological study of lead based Indian traditional drug: Naga Bhasma, Indian J Pharm Sci, 72 (1) (2010), pp. 24-30
- Wijenyake, A. Pitawala, R. Bandara, C. AbayasekaraThe role of herbometallic preparation in traditional medicine – a review on mica drug processing and pharmaceutical applications, J Ethnopharmacol, 155 (2014), pp. 1001-1010
- G. Pyrgiotakis, T.K. Bhowmick, K. Finton, A.K. Suresh, S.G. Kane, R. Bellare, et al.Cell (A549)-particle (Jasad

ISSN: 2456-3110	ORIGINAL ARTICLE Mar-Apr 2020
Bhasma) interaction using Raman spectroscopy, J Biopolymers, 89 (6) (2015), pp. 555-563.Google Scholar	How to cite this article: Dr. Sruthi CV, Dr. Sneha Dinesh Patel, Dr. Vikram S. SEM-EDAX Analysis of Jarita Vanga and Vanga Bhasma. J Ayurveda Integr Med Sci 2020;2:74-82. http://dx.doi.org/10.21760/jaims.5.2.11 Source of Support: Nil, Conflict of Interest: None declared.

Copyright © 2020 The Author(s); Published by Maharshi Charaka Ayurveda Organization, Vijayapur (Regd). This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.