Medicinal plants of Bhavaprakasha Nighantu having Jwarahara (anti-pyretic), Shwasahara (anti-asthmatic) and Kasahara (anti-tussive) properties for the management of COVID 19 : A Review
Abstract
Aim: To find out effective plants from Bhavaprakasha Nighantu in the management of COVID 19 and their analysis on the basis of pharmacodynamics attributes and reported pharmacological activities. Background: COVID 19 is declared as a pandemic by W.H.O. which is affecting 216 countries. The graph of confirmed cases and deaths is rising day by day. Due to lack of definitive treatment, anti-virals are choice of drug along with other antimicrobial and supportive treatment. High grade fever, sore throat and difficulty in breathing are cardinal signs of its early stage. In Bhavaprakasha Nighantu various plants has been mentioned which are having Jwarahara (anti-pyretic), Shwasahara (anti-asthmatic) and Kasahara (anti-tussive) properties. A complete review of these plants with pharmacodynamic attributes (Rasa, Veerya, Vipaka) has been done form Bhavaprakasha Nighantu. The plants were further reviewed from PubMed for anti-viral, anti-pyretic, anti-tussive/anti-asthmatic and immunomodulatory activities to make it more scientific. Results: 22 plants were found which are having all these properties. Kutki [Picrorhiza kurroa Royale ex. Benth], Kiratatikta [Swertia chirayita (Roxb.) Buch. Ham.ex C.B.Clarke] and Guduchi [Tinospora sinensis (Lour) Merr.] etc. were found to be having immunomodulatory action. Kiratatikta, Guduchi, and Pippali [Piper longum L.] etc. were found having anti-pyretic activity. Kutki, Kiratatikta and Katphala [Myrica esculenta Buch. Ham. ex D. Don] etc. were found having beneficial for respiratory illnesses. Kutki, Kiratatikta, Haritaki, Aamalaki and Sariva [Hemidesmus indicus (L.) R. Br. ex Schult] etc. were found having antiviral activities. Conclusion: 22 plants found to be effective in Bhavaprakasha Nighantu and they are also reported having pharmacological activities which are beneficial in COVID 19. Clinical Significance: Among these plants many are easily available and also in day-to-day practice. Thus, these plants and their combinations can be used in early stage of COVID 19 and also in later stages with minimised dose and drug interactions.
Downloads
References
Harapan H, Itoh N, Yufika A, et al. Coronavirus disease 2019 (COVID-19): A literature review. J Infect Public Health 2020;13(5):667-673.
https://covid19.who.int/ last assessed on 24.08.2020 at 3.45 PM.
Singhal T. A Review of Coronavirus Disease-2019 (COVID-19). Indian J Pediatr 2020;87(4):281-286.
Wang Y, Wang Y, Chen Y, Qin Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J Med Virol 2020;92(6):568-576.
Triggle CR, Bansal D, Farag EABA, Ding H, Sultan AA. COVID-19: Learning from Lessons to Guide Treatment and Prevention Interventions. mSphere 2020;5(3):e00317-20.
Kesharwani A, Polachira SK, Nair R, Agarwal A, Mishra NN, Gupta SK. Anti-HSV-2 activity of Terminalia chebula Retz extract and its constituents, chebulagic and chebulinic acids. BMC Complement Altern Med 2017;17(1):110.
Ajala OS, Jukov A, Ma CM. Hepatitis C virus inhibitory hydrolysable tannins from the fruits of Terminalia chebula. Fitoterapia 2014;99:117-123.
Mishra NN, Kesharwani A, Agarwal A, Polachira SK, Nair R, Gupta SK. Herbal Gel Formulation Developed for Anti-Human Immunodeficiency Virus (HIV)-1 Activity Also Inhibits In Vitro HSV-2 Infection. Viruses 2018;10(11):580.
Oyuntsetseg N, Khasnatinov MA, Molor-Erdene P, et al. Evaluation of direct antiviral activity of the Deva-5 herb formulation and extracts of five Asian plants against influenza A virus H3N8. BMC Complement Altern Med 2014;14:235.
Ahn MJ, Kim CY, Lee JS, et al. Inhibition of HIV-1 integrase by galloyl glucoses from Terminalia chebula and flavonol glycoside gallates from Euphorbia pekinensis. Planta Med 2002;68(5):457-459.
el-Mekkawy S, Meselhy MR, Kusumoto IT, Kadota S, Hattori M, Namba T. Inhibitory effects of Egyptian folk medicines on human immunodeficiency virus (HIV) reverse transcriptase. Chem Pharm Bull (Tokyo) 1995;43(4):641-648.
Lin LT, Chen TY, Chung CY, et al. Hydrolyzable tannins (chebulagic acid and punicalagin) target viral glycoprotein-glycosaminoglycan interactions to inhibit herpes simplex virus 1 entry and cell-to-cell spread. J Virol 2011;85(9):4386-4398.
Badmaev V, Nowakowski M. Protection of epithelial cells against influenza A virus by a plant derived biological response modifier Ledretan-96. Phytother Res 2000;14(4):245-249.
Yukawa TA, Kurokawa M, Sato H, et al. Prophylactic treatment of cytomegalovirus infection with traditional herbs. Antiviral Res 1996;32(2):63-70.
Kurokawa M, Nagasaka K, Hirabayashi T, et al. Efficacy of traditional herbal medicines in combination with acyclovir against herpes simplex virus type 1 infection in vitro and in vivo. Antiviral Res 1995;27(1-2):19-37.
Joshi B, Panda SK, Jouneghani RS, et al. Antibacterial, Antifungal, Antiviral, and Anthelmintic Activities of Medicinal Plants of Nepal Selected Based on Ethnobotanical Evidence. Evid Based Complement Alternat Med 2020;2020:1043471.
Nando Dulal Das, Kyoung Hwa Jung, Ji Hyun Park, Mi Ran Choi, Hyung Tae Lee, Moo Sung Kim, Sang Rin Lee, and Young Gyu Chai.Journal of Medicinal Food.Jul 2012.651-657.
Das ND, Jung KH, Park JH, et al. Terminalia chebula extract acts as a potential NF-κB inhibitor in human lymphoblastic T cells. Phytother Res 2011;25(6):927-934.
Trinh TA, Park J, Oh JH, et al. Effect of Herbal Formulation on Immune Response Enhancement in RAW 264.7 Macrophages. Biomolecules 2020;10(3):424.
Lv JJ, Yu S, Xin Y, et al. Anti-viral and cytotoxic norbisabolane sesquiterpenoid glycosides from Phyllanthus emblica and their absolute configurations. Phytochemistry 2015;117:123-134.
Xiang Y, Pei Y, Qu C, et al. In vitro anti-herpes simplex virus activity of 1,2,4,6-tetra-O-galloyl-β-D-glucose from Phyllanthus emblica L. (Euphorbiaceae). Phytother Res 2011;25(7):975-982.
Mishra NN, Kesharwani A, Agarwal A, Polachira SK, Nair R, Gupta SK. Herbal Gel Formulation Developed for Anti-Human Immunodeficiency Virus (HIV)-1 Activity Also Inhibits In Vitro HSV-2 Infection. Viruses 2018;10(11):580.
Liu G, Xiong S, Xiang YF, et al. Antiviral activity and possible mechanisms of action of pentagalloylglucose (PGG) against influenza A virus. Arch Virol 2011;156(8):1359-1369.
Xiang YF, Ju HQ, Li S, Zhang YJ, Yang CR, Wang YF. Effects of 1,2,4,6-tetra-O-galloyl-β-D-glucose from P. emblica on HBsAg and HBeAg secretion in HepG2.2.15 cell culture. Virol Sin 2010;25(5):375-380.
Perianayagam JB, Sharma SK, Joseph A, Christina AJ. Evaluation of anti-pyretic and analgesic activity of Emblica officinalis Gaertn. J Ethnopharmacol 2004;95(1):83-85.
Baliga MS, Dsouza JJ. Amla (Emblica officinalis Gaertn), a wonder berry in the treatment and prevention of cancer. Eur J Cancer Prev 2011;20(3):225-239.
Zeng Z, Lv W, Jing Y, et al. Structural characterization and biological activities of a novel polysaccharide from Phyllanthus emblica. Drug Discov Ther 2017;11(2):54-63.
Singh MK, Yadav SS, Gupta V, Khattri S. Immunomodulatory role of Emblica officinalis in arsenic induced oxidative damage and apoptosis in thymocytes of mice. BMC Complement Altern Med 2013;13:193.
Chatterjee A, Chattopadhyay S, Bandyopadhyay SK. Biphasic Effect of Phyllanthus emblica L. Extract on NSAID-Induced Ulcer: An Antioxidative Trail Weaved with Immunomodulatory Effect. Evid Based Complement Alternat Med 2011;2011:146808.
Ganju L, Karan D, Chanda S, Srivastava KK, Sawhney RC, Selvamurthy W. Immunomodulatory effects of agents of plant origin. Biomed Pharmacother 2003;57(7):296-300.
Sai Ram M, Neetu D, Yogesh B, et al. Cyto-protective and immunomodulating properties of Amla (Emblica officinalis) on lymphocytes: an in-vitro study. J Ethnopharmacol 2002;81(1):5-10.
Chuchawankul S, Khorana N, Poovorawan Y. Piperine inhibits cytokine production by human peripheral blood mononuclear cells. Genet Mol Res 2012;11(1):617-627.
Kim HG, Han EH, Jang WS, et al. Piperine inhibits PMA-induced cyclooxygenase-2 expression through downregulating NF-κB, C/EBP and AP-1 signaling pathways in murine macrophages. Food Chem Toxicol 2012;50(7):2342-2348.
Pathak N, Khandelwal S. Modulation of cadmium induced alterations in murine thymocytes by piperine: oxidative stress, apoptosis, phenotyping and blastogenesis. Biochem Pharmacol 2006;72(4):486-497.
Meghwal M, Goswami TK. Piper nigrum and piperine: an update. Phytother Res 2013;27(8):1121-1130.
Yadav V, Krishnan A, Vohora D. A systematic review on Piper longum L.: Bridging traditional knowledge and pharmacological evidence for future translational research. J Ethnopharmacol 2020;247:112255.
Nilani P, Kasthuribai N, Duraisamy B, et al. Invitro antioxidant activity of selected antiasthmatic herbal constituents. Anc Sci Life 2009;28(4):3-6.
Kumar S, Mabalirajan U, Rehman R, et al. A novel cinnamate derivative attenuates asthma features and reduces bronchial epithelial injury in mouse model. Int Immunopharmacol 2013;15(1):150-159.
Nilani P, Duraisamy B, Dhamodaran P, Ravichandran S, Elango K. Effect of selected antiasthmatic plant constituents against micro organism causing upper respiratory tract infection. Anc Sci Life 2010;29(3):30-32.
Sunila ES, Kuttan G. Immunomodulatory and antitumor activity of Piper longum Linn. and piperine. J Ethnopharmacol 2004;90(2-3):339-346.
Akram M, Hamid A, Khalil A, et al. Review on medicinal uses, pharmacological, phytochemistry and immunomodulatory activity of plants. Int J Immunopathol Pharmacol 2014;27(3):313-319.
Win NN, Kodama T, Lae KZW, et al. Bis-iridoid and iridoid glycosides: Viral protein R inhibitors from Picrorhiza kurroa collected in Myanmar. Fitoterapia 2019;134:101-107.
Verma PC, Basu V, Gupta V, Saxena G, Rahman LU. Pharmacology and chemistry of a potent hepatoprotective compound Picroliv isolated from the roots and rhizomes of Picrorhiza kurroa royle ex benth. (kutki). Curr Pharm Biotechnol 2009;10(6):641-649.
Thyagarajan SP, Jayaram S, Gopalakrishnan V, Hari R, Jeyakumar P, Sripathi MS. Herbal medicines for liver diseases in India. J Gastroenterol Hepatol 2002;17 Suppl 3:S370-S376.
Dorsch W, Stuppner H, Wagner H, Gropp M, Demoulin S, Ring J. Antiasthmatic effects of Picrorhiza kurroa: androsin prevents allergen- and PAF-induced bronchial obstruction in guinea pigs. Int Arch Allergy Appl Immunol 1991;95(2-3):128-133.
Dorsch W, Müller A, Christoffel V, et al. Antiasthmatic acetophenones - an in vivo study on structure activity relationship. Phytomedicine 1994;1(1):47-54.
Pfuhler S, Stehrer-Schmid P, Dorsch W, Wagner H, Wolf HU. Investigation of genotoxic effects of the anti-asthmatic and anti-inflammatory drugs Apocynin and Acetosyringenin in the Salmonella typhimurium mutagenicity assay and the SCE-test with human lymphocytes. Phytomedicine 1995;1(4):319-322.
Kumar R, Gupta YK, Singh S, Raj A. Anti-inflammatory Effect of Picrorhiza kurroa in Experimental Models of Inflammation. Planta Med 2016;82(16):1403-1409.
Hussain A, Shadma W, Maksood A, Ansari SH. Protective effects of Picrorhiza kurroa on cyclophosphamide-induced immunosuppression in mice. Pharmacognosy Res 2013;5(1):30-35.
Gupta A, Khajuria A, Singh J, et al. Immunomodulatory activity of biopolymeric fraction RLJ-NE-205 from Picrorhiza kurroa. Int Immunopharmacol 2006;6(10) :1543-1549.
Labadie RP, van der Nat JM, Simons JM, et al. An ethnopharmacognostic approach to the search for immunomodulators of plant origin. Planta Med 1989;55(4):339-348.
Sane SA, Shakya N, Gupta S. Immunomodulatory effect of picroliv on the efficacy of paromomycin and miltefosine in combination in experimental visceral leishmaniasis. Exp Parasitol 2011;127(2):376-381.
Sidiq T, Khajuria A, Suden P, et al. Possible role of macrophages induced by an irridoid glycoside (RLJ-NE-299A) in host defense mechanism. Int Immunopharmacol 2011;11(1):128-135.
Russo A, Izzo AA, Cardile V, Borrelli F, Vanella A. Indian medicinal plants as antiradicals and DNA cleavage protectors. Phytomedicine 2001;8(2):125-132.
Woo SY, Win NN, Noe Oo WM, et al. Viral protein R inhibitors from Swertia chirata of Myanmar. J Biosci Bioeng 2019;128(4):445-449.
Pal T, Padhan JK, Kumar P, Sood H, Chauhan RS. Comparative transcriptomics uncovers differences in photoautotrophic versus photoheterotrophic modes of nutrition in relation to secondary metabolites biosynthesis in Swertia chirayita. Mol Biol Rep 2018;45(2):77-98.
Wang YL, Xiao ZQ, Liu S, et al. Antidiabetic effects of Swertia macrosperma extracts in diabetic rats. J Ethnopharmacol 2013;150(2):536-544.
Lad H, Bhatnagar D. Amelioration of oxidative and inflammatory changes by Swertia chirayita leaves in experimental arthritis. Inflammopharmacology 2016;24(6):363-375.
Mohanty S, Srivastava P, Maurya AK, et al. Antimalarial and safety evaluation of Pluchea lanceolata (DC.) Oliv. & Hiern: in-vitro and in-vivo study. J Ethnopharmacol 2013;149(3):797-802.
Rauf A, Uddin G, Siddiqui BS, et al. In-vivo antinociceptive, anti-inflammatory and antipyretic activity of pistagremic acid isolated from Pistacia integerrima. Phytomedicine 2014;21(12):1509-1515.
Rana S, Shahzad M, Shabbir A. Pistacia integerrima ameliorates airway inflammation by attenuation of TNF-α, IL-4, and IL-5 expression levels, and pulmonary edema by elevation of AQP1 and AQP5 expression levels in mouse model of ovalbumin-induced allergic asthma. Phytomedicine 2016;23(8):838-845.
Shirole RL, Shirole NL, Kshatriya AA, Kulkarni R, Saraf MN. Investigation into the mechanism of action of essential oil of Pistacia integerrima for its antiasthmatic activity. J Ethnopharmacol 2014;153(3):541-551.
Patel K, Rao Nj, Gajera V, Bhatt P, Patel K, Gandhi T. Anti-allergic Activity of Stem Bark of Myrica esculenta Buch.-Ham. (Myricaceae). J Young Pharm 2010;2(1):74-78.
Joshi B, Panda SK, Jouneghani RS, et al. Antibacterial, Antifungal, Antiviral, and Anthelmintic Activities of Medicinal Plants of Nepal Selected Based on Ethnobotanical Evidence. Evid Based Complement Alternat Med 2020;2020:1043471.
Patel JJ, Acharya SR, Acharya NS. Clerodendrum serratum (L.) Moon. - a review on traditional uses, phytochemistry and pharmacological activities. J Ethnopharmacol 2014;154(2):268-285.
Kajaria D, Tripathi JS, Tiwari SK, Pandey BL. Anti-histaminic, mast cell stabilizing and bronchodilator effect of hydroalcoholic extract of polyherbal compound- Bharangyadi. Anc Sci Life 2012;31(3):95-100.
Sahoo M, Jena L, Rath SN, Kumar S. Identification of Suitable Natural Inhibitor against Influenza A (H1N1) Neuraminidase Protein by Molecular Docking. Genomics Inform 2016;14(3):96-103.
Guo NL, Lu DP, Woods GL, et al. Demonstration of the anti-viral activity of garlic extract against human cytomegalovirus in vitro. Chin Med J (Engl) 1993;106(2):93-96.
Zhang J, Wang H, Xiang ZD, Shu SN, Fang F. Allitridin inhibits human cytomegalovirus replication in vitro. Mol Med Rep 2013;7(4):1343-1349.
Foroutan-Rad M, Tappeh KH, Khademvatan S. Antileishmanial and Immunomodulatory Activity of Allium sativum (Garlic): A Review. J Evid Based Complementary Altern Med 2017;22(1):141-155.
Oosthuizen C, Arbach M, Meyer D, Hamilton C, Lall N. Diallyl Polysulfides from Allium sativum as Immunomodulators, Hepatoprotectors, and Antimycobacterial Agents. J Med Food 2017;20(7):685-690.
Hussain L, Akash MS, Ain NU, Rehman K, Ibrahim M. The Analgesic, Anti-Inflammatory and Anti-Pyretic Activities of Tinospora cordifolia. Adv Clin Exp Med 2015;24(6):957-964.
Sharma U, Bala M, Kumar N, Singh B, Munshi RK, Bhalerao S. Immunomodulatory active compounds from Tinospora cordifolia. J Ethnopharmacol 2012;141(3) :918-926.
Haque MA, Jantan I, Abbas Bukhari SN. Tinospora species: An overview of their modulating effects on the immune system. J Ethnopharmacol 2017;207:67-85.
Sachdeva H, Sehgal R, Kaur S. Tinospora cordifolia as a protective and immunomodulatory agent in combination with cisplatin against murine visceral leishmaniasis. Exp Parasitol 2014;137:53-65.
Bala M, Pratap K, Verma PK, Singh B, Padwad Y. Validation of ethnomedicinal potential of Tinospora cordifolia for anticancer and immunomodulatory activities and quantification of bioactive molecules by HPTLC. J Ethnopharmacol 2015;175:131-137.
Aher V, Kumar Wahi A. Biotechnological Approach to Evaluate the Immunomodulatory Activity of Ethanolic Extract of Tinospora cordifolia Stem (Mango Plant Climber). Iran J Pharm Res 2012;11(3):863-872.
Narkhede AN, Jagtap SD, Kasote DM, Kulkarni OP, Harsulkar AM. Comparative immunomodulation potential of Tinospora cordifolia (Willd.) Miers ex Hook. F., Tinospora sinensis (Lour.) Merrill and Tinospora cordifolia growing on Azadirachta indica A. Juss. Indian J Exp Biol 2014;52(8):808-813.
Aranha I, Clement F, Venkatesh YP. Immunostimulatory properties of the major protein from the stem of the Ayurvedic medicinal herb, guduchi (Tinospora cordifolia). J Ethnopharmacol 2012;139(2):366-372.
Singh N, Singh SM, Shrivastava P. Immunomodulatory and antitumor actions of medicinal plant Tinospora cordifolia are mediated through activation of tumor-associated macrophages. Immunopharmacol Immunotoxicol 2004;26(1):145-162.
Desai VR, Ramkrishnan R, Chintalwar GJ, Sainis KB. G1-4A, an immunomodulatory polysaccharide from Tinospora cordifolia, modulates macrophage responses and protects mice against lipopolysaccharide induced endotoxic shock. Int Immunopharmacol 2007;7(10):1375-1386.
Aranha I, Venkatesh YP. Humoral immune and adjuvant responses of mucosally-administered Tinospora cordifolia immunomodulatory protein in BALB/c mice. J Ayurveda Integr Med 2020;11(2):140-146.
Singh N, Singh SM, Shrivastava P. Immunomodulatory and antitumor actions of medicinal plant Tinospora cordifolia are mediated through activation of tumor-associated macrophages. Immunopharmacol Immunotoxicol 2004;26(1):145-162.
Desai VR, Ramkrishnan R, Chintalwar GJ, Sainis KB. G1-4A, an immunomodulatory polysaccharide from Tinospora cordifolia, modulates macrophage responses and protects mice against lipopolysaccharide induced endotoxic shock. Int Immunopharmacol 2007;7(10):1375-1386.
Aranha I, Venkatesh YP. Humoral immune and adjuvant responses of mucosally-administered Tinospora cordifolia immunomodulatory protein in BALB/c mice. J Ayurveda Integr Med 2020;11(2):140-146.
Kajaria DK, Gangwar M, Kumar D, et al. Evaluation of antimicrobial activity and bronchodialator effect of a polyherbal drug-Shrishadi. Asian Pac J Trop Biomed 2012;2(11):905-909.
Sridhar N, Lakshmi DS, Goverdhan P. Effect of ethanolic extracts of Justicia neesii Ramam. against experimental models of pain and pyrexia. Indian J Pharmacol 2015;47(2):177-180.
Janbaz KH, Jan A, Qadir MI, Gilani AH. Spasmolytic, bronchodilator and vasorelaxant activity of methanolic extract of Tephrosia purpurea. Acta Pol Pharm 2013;70(2):261-269.
Damre AS, Gokhale AB, Phadke AS, Kulkarni KR, Saraf MN. Studies on the immunomodulatory activity of flavonoidal fraction of Tephrosia purpurea. Fitoterapia 2003;74(3):257-261.
Bonvicini F, Lianza M, Mandrone M, Poli F, Gentilomi GA, Antognoni F. Hemidesmus indicus (L.) R. Br. extract inhibits the early step of herpes simplex type 1 and type 2 replication. New Microbiol 2018;41(3):187-194.
Das S, Bisht SS. The bioactive and therapeutic potential of Hemidesmus indicus R. Br. (Indian Sarsaparilla) root. Phytother Res 2013;27(6):791-801.
Shendge PN, Belemkar S. Therapeutic Potential of Luffa acutangula: A Review on Its Traditional Uses, Phytochemistry, Pharmacology and Toxicological Aspects. Front Pharmacol 2018;9:1177.
Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 2020;382(18):1708-1720.
Puthiyedath R, Kataria S, Payyappallimana U, et al. Ayurvedic clinical profile of COVID-19 - A preliminary report [published online ahead of print, 2020 Jun 12]. J Ayurveda Integr Med 2020;S0975-9476(20)30039-5.
Tillu G, Salvi S, Patwardhan B. AYUSH for COVID-19 management. J Ayurveda Integr Med 2020;11(2):95-96.
Vaghbhata. Ashtanga Hridaya Vol. II, Chikitsa sthana, Jwarachikitsa adhyaya, 1/95, Varanasi: Chaukhambha krishnadas Academy; 2009. p. 190.
Copyright (c) 2022 Rita
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Journal of Ayurveda and Integrated Medical Sciences (JAIMS) retains the copyright of the contents of this journal but grant the readers the right to use the contents with terms and conditions under a creative common attribution licenses 4 of Attribution, Share Alike and Non-commercial type (CC BY-NC-SA) that allows copy, distribute, display, and perform the work and make derivative works based on it only for non-commercial purposes.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.